MTH102N
 ASSIGNMENT-C6

Integrals of the form $\int_{-\infty}^{\infty} f(x) d x$ should be interpreted as $\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x$.
(1) Suppose f and g are analytic functions in a neighbourhood of a point $z_{0} \in \mathbb{C}$ such that $g\left(z_{0}\right) \neq 0$ and f has a simple zero at z_{0}. Prove that

$$
\operatorname{Res}\left(\frac{g}{f}: z_{0}\right)=\frac{g\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)} .
$$

(2) Let f be analytic in a domain Ω and γ be a simple closed curve in Ω in the counterclockwise sense. Suppose z_{0} is the only zero of f in the region enclosed by Ω. Show that

$$
\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=2 \pi i m
$$

where m is the order of zero of f at z_{0}.
(3) Find the isolated singularities and compute the residue of the functions

$$
\begin{array}{ll}
\text { a) } \frac{e^{z}}{z^{2}-1}, \quad \text { b) } \frac{3 z}{z^{2}+i z+2}, \quad \text { c) } \cot \pi z
\end{array}
$$

(4) let $f(z)=\frac{\pi \cot \pi z}{\left(z+\frac{1}{2}\right)^{2}}$. Compute the residue of f at isolated singularities.
(5) Prove Jordan's inequality: Given any $R>0, \int_{0}^{\pi} e^{-R \sin \theta} d \theta<\frac{\pi}{R}$.
(6) Evaluate:

$$
\text { (a) } \int_{-\infty}^{\infty} \frac{1}{\left(1+x^{2}\right)^{n}} d x, n \geq 1 \text {, (b) } \int_{-\infty}^{\infty} \frac{x \sin 3 x}{x^{2}+a^{2}} d x, a>0
$$

(Hint: For b) use Jordan's inequality.)
(7) Prove that $\int_{0}^{\pi} \sin ^{2 n} \theta d \theta=\frac{(2 n)!}{2^{2 n}(n!)^{2}} \pi$.
(8) Compute the following integrals:
(a) $\int_{-\infty}^{\infty} \frac{\sin x}{x} d x$, (b) $\int_{-\infty}^{\infty} \frac{\cos a x-\cos b x}{x^{2}} d x$, (c) $\int_{-\infty}^{\infty} \frac{e^{a x}}{e^{x}+1} d x$, for $0<a<1$.
(9) Show that $\int_{-\infty}^{\infty} e^{-\pi x^{2}} e^{-2 \pi i x \xi} d x=e^{-\pi \xi^{2}}$, for $\xi \in \mathbb{R}$ by integrating the differentiable function $f(z)=e^{-z^{2}}$ along the lines of the rectangle with vertices $R, R+i \xi,-R+i \xi,-R$.
(10) Given $a>0$, prove that $\int_{\infty}^{\infty} \frac{\cos a x}{1+x^{2}} d x=\pi e^{-a}$.
(11) Find the image of the right half plane under the mapping $\phi(z)=i \frac{1-z}{1+z}$.
(12) What is the image of the strip $S=\{z=x+i y: 0<y<2\}$ under the Mobius transformation $\phi(z)=\frac{z}{z-i}$?

