First Midsemester Examination
 MTH102N
 Second Semester, 2008-09

Time: 1 Hour
Marks: 40
Notation: $B_{1}(0)=\{z \in \mathbb{C}:|z|<1\}, \overline{B_{1}(0)}=\{z \in \mathbb{C}:|z| \leq 1\}$.
1.a) Let γ be a circle in \mathbb{C} oriented counter clockwise. If the center of γ is at zero prove that

$$
\int_{\gamma}|z| d z=0
$$

b) Let $\left\{z_{n}\right\} \subset B_{1}(0)$ be a sequence such that $z_{n} \neq 0$, for all n and $z_{n} \rightarrow 0$. Does there exist any nonconstant function f which is analytic on $B_{1}(0)$ and $f\left(z_{n}\right)=(-1)^{n} z_{n}$? Justify your answer.
2.a) Evaluate the integral $\int_{\gamma} \frac{1}{(z-3)\left(z^{2}-1\right)} d z$, where $\gamma(t)=2 e^{i t}, t \in[0,2 \pi)$.
b) Let P be a polynomial of degree $n \geq 1$ with distinct roots. Let γ be a simple closed curve oriented counter clockwise, which does not pass through any root of P but encloses all roots of P. If P^{\prime} denotes the derivative of P then find the value of the integral

$$
\begin{equation*}
\int_{\gamma} \frac{P^{\prime}(z)}{P(z)} d z \tag{5+5}
\end{equation*}
$$

3.a) Let α and β be complex numbers such that $0<|\alpha|<|\beta|$. Find the Laurent series of the function

$$
f(z)=\frac{1}{(z-\alpha)(z-\beta)}
$$

in the annuli $A=\{z \in \mathbb{C}:|\alpha|<|z|<|\beta|\}$ and $B=\{z \in \mathbb{C}:|z|>|\beta|\}$.
b) Find all entire functions f which satisfies the inequality $|f(z)| \leq 1+|z|^{\frac{1}{2}}$, for all $z \in \mathbb{C}$. $[5+5]$
4.a) Let $f: \mathbb{C} \rightarrow \mathbb{C} \backslash\{0\}$ be a function such that $\operatorname{Re} f$ and $\operatorname{Im} f$ has continuous partial derivatives on \mathbb{C}. If $g(z)=[f(z)]^{2}$ is an analytic function on \mathbb{C} then prove that f is analytic on \mathbb{C}.
b) For $i=1,2$ let $f_{i}: \overline{B_{1}(0)} \rightarrow \mathbb{C} \backslash\{0\}$ be analytic functions. If $\left|f_{1}(z)\right|=\left|f_{2}(z)\right|$ for all z with $|z|=1$ then prove that there exists a $\theta \in[0,2 \pi)$, independent of z, such that $f_{1}(z)=e^{i \theta} f_{2}(z)$ for all $z \in \overline{B_{1}(0)}$.

