SECOND MIDSEMESTER EXAMINATION MTH102N
 SECOND SEMESTER, 2008-09
 TIME: 1 HOUR

Marks: 40
Note: a) All matrices have real entries. b) If A is a $n \times n$ matrix then $|A|$ stands for the determinant of A. c) I_{n} stands for the identity matrix of order n.
1.a) Describe the image of the set $\{z \in \mathbb{C}:|z| \leq 1, \operatorname{Re}(z) \geq 0\}$ under the Möbius transformation $f(z)=\frac{1+z}{1-z}$.
b) Find the residue of the function $f(z)=\frac{\sinh z}{z^{3}}$ at $z=0$.
2.a) Evaluate the integral $\int_{0}^{2 \pi} \frac{d \theta}{1+a \cos \theta}$, where $|a|<1$.
b) Let A and B be symmetric $n \times n$ matrices. Prove that $A B$ is a skew symmetric matrix if and only if $A B=-B A$.
3.a) Given a $n \times n$ matrix A define $\operatorname{Tr}(A)=\sum_{i=1}^{n} a_{i i}$. Prove that $\operatorname{Tr}(A-B)=\operatorname{Tr}(A)-$ $\operatorname{Tr}(B)$. Hence prove that there does not exist any pair of $n \times n$ matrices A, B such that $A B-B A=I_{n}$.
b) Let A and B be $n \times n$ matrices. Evaluate the determinant of the $2 n \times 2 n$ matrix $C=\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$ in terms of determinant of A and B.
(0 stands for $n \times n$ zero matrix).
4.a) Let A be a $n \times n$ matrix with $|A|=1$. Evaluate $\operatorname{Adj}(\operatorname{Adj}(A))$ in term of A.
b) Let A be a $n \times n$ matrix. Prove that, if the equation $A x=0$ has $x=0$ as the only solution then A is invertible.

