SECOND MIDSEMESTER EXAMINATION MTH102N SECOND SEMESTER, 2008-09 TIME: 1 HOUR

Marks: 40

Note: a) All matrices have real entries. b) If A is a $n \times n$ matrix then |A| stands for the determinant of A. c) I_n stands for the identity matrix of order n.

- 1.a) Describe the image of the set $\{z \in \mathbb{C} : |z| \le 1, \operatorname{Re}(z) \ge 0\}$ under the Möbius transformation $f(z) = \frac{1+z}{1-z}$.
- b) Find the residue of the function $f(z) = \frac{\sinh z}{z^3}$ at z = 0. [5+5] 2.a) Evaluate the integral $\int_0^{2\pi} \frac{d\theta}{1 + a\cos\theta}$, where |a| < 1.
 - b) Let A and B be symmetric $n \times n$ matrices. Prove that AB is a skew symmetric matrix if and only if AB = -BA. [5+5]
- 3.a) Given a $n \times n$ matrix A define $\operatorname{Tr}(A) = \sum_{i=1}^{n} a_{ii}$. Prove that $\operatorname{Tr}(A B) = \operatorname{Tr}(A) \operatorname{Tr}(B)$. Hence prove that there does not exist any pair of $n \times n$ matrices A, B such that $AB BA = I_n$.
 - b) Let A and B be $n \times n$ matrices. Evaluate the determinant of the $2n \times 2n$ matrix $C = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ in terms of determinant of A and B. (0 stands for $n \times n$ zero matrix). [5+5]
- 4.a) Let A be a $n \times n$ matrix with |A| = 1. Evaluate $\operatorname{Adj}(\operatorname{Adj}(A))$ in term of A.
 - b) Let A be a $n \times n$ matrix. Prove that, if the equation Ax = 0 has x = 0 as the only solution then A is invertible. [5+5]