Lecture 3

Determinants: There are different ways to define determinants. Each one has its advantages. We will define using the concept permutation.

Permutation: Let S be any finite set. Here we take $S = \{1, 2, \ldots, n\}$. Any one-one onto mapping of S to itself is called permutation.

If σ is a permutation then σ^{-1} is also a permutation. Also, given a permutation σ and τ, the composition $\sigma \circ \tau$ is also a permutation.

We denote the set of all permutations on $\{1, 2, \ldots, n\}$ by S_n.

Examples: Let $\sigma, \phi \in S_4$ be defined by $\sigma = (1 \ 2 \ 3 \ 4) \ 2$ $\phi = (1 \ 2 \ 3 \ 4) \ 3$. Then $\sigma \circ \phi = (1 \ 2 \ 3 \ 4) \ 4$ and $\phi \circ \sigma = (1 \ 2 \ 3 \ 4) \ 2$ $\sigma^{-1} = (1 \ 2 \ 3 \ 4) \ 4$, clearly $\sigma \circ \sigma^{-1} = \sigma^{-1} \circ \sigma = (1 \ 2 \ 3 \ 4)$.

Transposition: A permutation is called transposition if it moves exactly two points in S.

We need the following two results which we state without proof:

Theorem: 1. Every permutation can be written as a product (composition) of transpositions.

2. If σ is a permutation and $\sigma_1, \sigma_2, \ldots, \sigma_r$ are transpositions such that $\sigma = \sigma_1 \circ \sigma_2 \circ \ldots \circ \sigma_r$, then r and σ are both even or odd. (Note that here $\sigma_1, \ldots, \sigma_r$ need not be distinct)

Ex: Let $\sigma = (1 \ 2 \ 3 \ 4)$. Then $\sigma = (1 \ 2 \ 3 \ 4) \circ (2 \ 4 \ 1 \ 3) \circ (1 \ 2 \ 3 \ 4) \circ (2 \ 4 \ 1 \ 3)$.

We write $\sigma = (13)(4)(2)$, note that $\sigma = (21)(23)(24)$.

Even or odd permutation: A permutation σ is called an even permutation if it can be written as a product of an even number of transpositions. Otherwise, it is called an odd permutation.
The identity permutation I is even and every transposition is odd.

Definition Define $\text{Sign}(\sigma) = 1$ if σ is even & $\text{Sign}(\sigma) = -1$ if σ is odd.

Determinants: Let $A = (a_{ij})$ be an $n \times n$ matrix. Its determinant, denoted by $|A|$, is:

$$\det A = |A| = \sum_{\sigma \in S_n} \text{Sign}(\sigma) a_{1 \sigma(1)} a_{2 \sigma(2)} \cdots a_{n \sigma(n)}$$

(Note that S_n has $n!$ elements).

Example: Let $A = (a_{11}, a_{12})$. (Here $S_2 = \{ I, (1, 2) \}$, so $|A| = (\text{sign } I) a_{11} a_{22} + \text{sign } (1, 2) a_{12} a_{21} = a_{11} a_{22} - a_{12} a_{21}$.)

This definition is not very convenient for computing determinants. However, several properties of determinants can be derived easily from this definition.

Properties of the determinants: Let $A = (a_{ij})$ & $B = (b_{ij})$ be $n \times n$ matrices. Then $\det AB$ is obtained by interchanging two rows of A then $|A| = -|B|$.

Proof: Suppose $b_{pq} = a_{pq}$, $b_{eq} = a_{eq}$ & $a_{ij} = b_{ij}$, $1 + p, 2 + q$.

Consider 1-transposition $\tau = (p q)$. Note that $S_n = \{ \sigma \tau : \sigma \in S_n \}$. Hence:

$$|B| = \sum_{\sigma \in S_n} \text{Sign}(\sigma) b_{1 \sigma(1)} b_{2 \sigma(2)} \cdots b_{n \sigma(n)}$$

$$= \sum_{\sigma \in S_n} \text{Sign}(\sigma) \text{Sign}(I) b_{1 \sigma(1)} b_{2 \sigma(2)} \cdots b_{n \sigma(n)}$$

$$= (\text{Sign } I) \sum_{\sigma \in S_n} \text{Sign}(\sigma) a_{1 \sigma(1)} a_{2 \sigma(2)} \cdots a_{n \sigma(n)}$$

$$= -|A|. \quad \square$$
Cor: (P2) If A has two identical rows then \(|A| = 0 \).

Proof: Let B be the matrix obtained by interchanging those two identical rows. Then \(A = B \). Since \(|A| = -|B| \) by (P1), \(|A| = 0 \).

The proofs of the following properties (P3) and (P4) are similar to the proof of (P1).

Prop: (P3) If \(B \) is obtained by multiplying a row of \(A \) by a constant \(c \), then \(|B| = c |A| \).

Prop: (P4) Suppose \(C = (c_{ij}) \). Further assume that \(A, B \) and \(C \) differ only in the \(k \) th row for some \(k \) s.t. \(c_{kj} = a_{kj} + b_{kj} \).

Then \(|C| = |A| + |B| \).

Prop: (P5) If \(B \) is obtained by adding \(c \) times the \(p \) th row of \(A \) to its \(q \) th row then \(|A| = |B| \).

Proof: Note that \(b_{ij} = a_{ij} + c a_{pj} \) if \(i \) and \(b_{ij} = a_{ij} + c a_{pj} \) if \(i \neq q \). Let \(C = (c_{ij}) \) where, for all \(j \), \(c_{ij} = (i\neq p) a_{ij} + c a_{pj} \).

Then \(A, B \) and \(C \) differ only in the \(q \) th row and \(b_{ij} = a_{ij} + c a_{ij} \).

Hence by (P4), \(|B| = |A| + |C| \). Further \(|C| = 0 \) by (P3) & (P).