As mentioned earlier, evaluating a determinant from its definition is not easy. We will derive two more properties of the determinant which will provide an inductive method for computing 1×1 determinants.

Lemma: Let \(A = \begin{pmatrix} B & a_{1n} \\ a_{21} & \ddots & a_{2n} \\ \vdots & \ddots & \ddots & \ddots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \) where \(B = (a_{ij})_{n-1 \times n-1} \). Then \(|A| = |B| \).

Proof: By definition \(|A| = \sum_{\sigma \in S_n} \text{sign}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)} \).

\[= \sum_{\sigma \in S_n, \sigma(n)=n} \text{sign}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n-1,\sigma(n-1)} \] (\(\therefore \sigma(n) \neq n \) then \(a_{n\sigma(n)} = 0 \))

\[= \sum_{\sigma \in S_n, \sigma(n)=n} \text{sign}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n-1,\sigma(n-1)} \] (\(\therefore \sigma(n) = n \))

\[= \sum_{\sigma \in S_n, \sigma(n)=n} \text{sign}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n-1,\sigma(n-1)} \] (\(\therefore S_{n-1} = \{ \sigma \in S_n : \sigma(n) = n \} \)).

Theorem: Let \(A = (a_{ij}) \) and let \(A_{ij} \) denote the matrix obtained by removing the \(i \)th row and the \(j \)th column of \(A \). Then

\[|A| = \sum_{j=1}^{n} (-1)^{i+j} |A_{ij}|. \]

Proof: Fix an \(i \in \{1,2,\ldots,n\} \). Define

\[A_1 = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}, \quad A_2 = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots \\ 0 & a_{n2} & \cdots & a_{nn} \end{pmatrix}, \quad A_3 = \cdots \]

Note that \(A_{ij} = (A)_{ij} = (A_1)_{ij} + (A_2)_{ij} + \cdots + (A_n)_{ij} \) and other rows of matrices \(A, A_1, A_2, \ldots, A_n \) are the same. Hence by (PA), \(|A| = \sum_{j=1}^{n} |A_{ij}| \).

Claim: \(|A_{ij}| = (-1)^{i+j} |A_{ij}| \), where \(A_{ij} \) is as defined in the statement of the result.
Note that

\[
A_j = \begin{pmatrix}
 \ldots & a_{ij} & \ldots \\
 \ldots & \ddots & \ldots \\
 \ldots & \ldots & a_{nn}
\end{pmatrix}
\]

\[\rightarrow\]

\[
\begin{pmatrix}
 A_{ij} & \ldots & 0 \\
 \vdots & \ddots & \vdots \\
 0 & \ldots & A_{nn}
\end{pmatrix}
\]

\[\rightarrow\]

\[
\begin{vmatrix}
 A_{ij} & \ldots & 0 \\
 \vdots & \ddots & \vdots \\
 0 & \ldots & A_{nn}
\end{vmatrix} = (\pm 1) \begin{vmatrix}
 a_{ij} & \ldots & 0 \\
 \vdots & \ddots & \vdots \\
 0 & \ldots & a_{nn}
\end{vmatrix}
\]

Determinant method of finding inverse:

Take some \(k \neq i \) and obtain the matrix \(B \) by replacing the
\(i \)th row of \(A \) with the \(k \)th row of \(A \) (by keeping the \(k \)th row
as it is). Then we get,

\[
\sum_{j=1}^{n} (\pm 1)^{i+j} A_{kj} |A_{ij}| = |B| = 0
\]

(As two rows of \(B \) are same).

So, \(\sum_{j=1}^{n} A_{kj} C_{ij} = |A| \) and \(\sum_{j=1}^{n} A_{kj} C_{ij} = 0 \).

\[
\begin{pmatrix}
 a_{11} & a_{12} & \ldots & a_{1n} \\
 a_{21} & a_{22} & \ldots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \ldots & a_{nn}
\end{pmatrix}
\begin{pmatrix}
 C_{i1} \\
 C_{i2} \\
 \vdots \\
 C_{in}
\end{pmatrix}
\]

\[
= |A| \begin{pmatrix}
 0 \\
 0 \\
 \vdots \\
 0
\end{pmatrix}
\]

\[
\begin{pmatrix}
 a_{11} & a_{12} & \ldots & a_{1n} \\
 a_{21} & a_{22} & \ldots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \ldots & a_{nn}
\end{pmatrix}
\begin{pmatrix}
 C_{i1} & C_{i2} & \ldots & C_{in} \\
 C_{i2} & C_{i2} & \ldots & C_{i2} \\
 \vdots & \vdots & \ddots & \vdots \\
 C_{in} & C_{in} & \ldots & C_{in}
\end{pmatrix}
\]

= |A| I_n

\[\Rightarrow\]

\[A^{-1} = \begin{pmatrix}
 C_{i1} & C_{i2} & \ldots & C_{in} \\
 C_{i2} & C_{i2} & \ldots & C_{i2} \\
 \vdots & \vdots & \ddots & \vdots \\
 C_{in} & C_{in} & \ldots & C_{in}
\end{pmatrix}\]

\[\Rightarrow\]

\[A (C_{ij}) = |A|, \text{ the matrix } (C_{ij}) \text{ is called the matrix of cofactor of } A\]
The matrix \((C_{ij})^T\) is called the (classical) adjoint (or adjugate) of \(A\) and it is denoted by \(\text{Adj} \ A\). Thus

\[A \ (\text{Adj} \ A) = |A| \ I_n. \]

Therefore the following result is immediate from Kii's fact.

Theorem: Let \(A\) be an \(n \times n\) matrix. If \(A\) is invertible, then

\[A^{-1} = \frac{1}{|A|} (\text{Adj} \ A). \]

Cramer's Rule for Solving System of Linear Equations:

The following result is about solvability of a system of linear equations.

Theorem: Let \(A\) be an \(n \times n\) matrix. Then the following statements are equivalent:

1. \(|A| \neq 0\)
2. \(A\) is invertible
3. \(Ax = b\) has a unique solution for every \((n \times 1)\) matrix \(b\)
4. \(Ax = b\) has a solution for every \(b\)

Proof: (1) \(\Rightarrow\) (2): We have already seen the proofs of these implications.

(2) \(\Rightarrow\) (3): For \(b\), choose \(x = A^{-1}b\) and note that \(Ax = A(A^{-1}b) = b\) and \(A^{-1}b\) has to be the only solution for \(Ax = b\).

(3) \(\Rightarrow\) (4): Obvious.

(4) \(\Rightarrow\) (2): For \(b_i = \begin{pmatrix} 0 \\ \delta_i \\ b \end{pmatrix}\) at \(i\), \(U_i\) is the \(i\)-th component of \(b\).

Hence \(AB = I_n\), where \(B = (U_1, U_2, \ldots, U_n)\).

Corollary: Let \(A\) be an \(n \times n\) matrix. Then the following are equivalent:

1. \(A\) is invertible
2. \(Ax = 0\) has only the trivial solution \(x = 0\).
Proof: (1) \(\Rightarrow \) (2) follows from the previous result.

(2) \(\Rightarrow \) (3) of the previous result: Suppose \(A u_1 = A u_2 = b \) for some \(b \) and \(u_1 \neq u_2 \). Then \(A(u_1 - u_2) = 0 \) where \(u_1 - u_2 \neq 0 \) which is a contradiction.

Cramer's Rule: Let \(A x = b \) be a system of \(n \) linear equations in \(n \) unknowns \(x_1, x_2, \ldots, x_n \). Then the system has a unique solution given by

\[
x_j = \frac{|C_j|}{|A|}, \quad j = 1, 2, \ldots, n.
\]

where \(C_j \) is the matrix obtained from \(A \) by replacing the \(j \)th column with the column matrix \(b = (b_1, b_2, \ldots, b_n)^t \).

Proof: \(\Rightarrow \) \(|A| \neq 0 \), then \(A \) is invertible and \(x = A^{-1}b \) is the unique solution of \(A x = b \),

i.e., \(x = \frac{1}{|A|} (\text{adj } A) b \)

\[
\Rightarrow x_j = \frac{1}{|A|} \ b_1 C_{1j} + b_2 C_{2j} + \ldots + b_n C_{nj}
\]

\[
= \frac{|C_j|}{|A|}.
\]

\(\Box \)