LECTURE 9: CAUCHY’S INTEGRAL FORMULA II

Let us first summarize Cauchy’s theorem and Cauchy’s integral formula. Let C be a simple closed curve contained in a simply connected domain D and f is an analytic function defined on D. Then

$$\int_C \frac{f(z)}{(z - z_0)^{n+1}}dz = \begin{cases}
2\pi if(z_0), & \text{if } n = 0 \text{ and } z_0 \text{ is enclosed by } C. \\
\frac{2\pi i}{n!}f^n(z_0), & \text{if } n \geq 1 \text{ and } z_0 \text{ is enclosed by } C. \\
0, & \text{if } z_0 \text{ lies outside the region enclosed by } C.
\end{cases}$$

By Cauchy’s integral formula one can also tackle integrals of the form $$\int_C \frac{f(z)}{(z - z_0)(z - z_1)}dz$$ where the simple closed curve C includes two points z_0, z_1. By using partial fraction we get that

$$\int_C \frac{f(z)}{(z - z_0)(z - z_1)}dz = \int_C \frac{f(z)}{z_0 - z_1}(\frac{1}{z - z_0} - \frac{1}{z - z_1})dz = \frac{2\pi i(\frac{f(z_0) - f(z_1)}{(z_0 - z_1)})}{(z_0 - z_1)}.$$

Example 1. If $a \in \mathbb{C}$ then

$$\int_{\{z:|z|=2\}} \frac{e^{az}}{z^2 + 1}dz = \int_{\{z:|z|=2\}} \frac{e^{az}}{(z + i)(z - i)}dz = \frac{e^{-ia} - e^{ia}}{4\pi}.$$

We will now see some more serious application of CIF. For $r > 0$ let us define $B_r(z_0) = \{z : |z - z_0| \leq r\}$ and $S_r(z_0) = \{z : |z - z_0| = r\}$.

Theorem 2. (Cauchy’s estimate) Suppose that f is analytic on a simply connected domain D and $\overline{B_R(z_0)} \subset D$ for some $R > 0$. If $|f(z)| \leq M$ for all $z \in S_R(z_0)$, then for all $n \geq 0$,

$$|f^n(z_0)| \leq \frac{n!M}{R^n}.$$

Proof. From Cauchy’s integral formula and ML inequality we have

$$|f^n(z_0)| = |\frac{n!}{2\pi i} \int_{\partial S_R(z_0)} \frac{f(z)}{(z - z_0)^{n+1}}dz| \leq \frac{n!}{2\pi} M \frac{1}{R^{n+1}} 2\pi R = \frac{n!M}{R^n}.$$

As a consequence of the above theorem we get the following miraculous result.

Theorem 3. (Liouville’s Theorem) If f is analytic and bounded on the whole \mathbb{C} then f is a constant function.
Lecture 9: Cauchy’s Integral Formula II

Proof. To prove this we will prove that \(f' \) is the zero function. Choose \(\epsilon > 0 \) arbitrary and choose any point \(z_0 \in \mathbb{C} \). Now consider \(B_R(z_0) \) such that \(R > M/\epsilon \) (for small \(\epsilon \), \(R \) will be very large but that is not a problem as \(f \) is analytic everywhere). By Cauchy’s estimate now we have,

\[
|f'(z_0)| \leq \frac{M}{R} < \epsilon.
\]

Hence \(f'(z_0) = 0 \). But \(z_0 \) is arbitrary and hence \(f'(z) = 0 \) for all \(z \in \mathbb{C} \). \(\Box \)

Remark: We have earlier observed that \(\cos z \) and \(\sin z \) are not bounded in \(\mathbb{C} \). Another proof of the same fact now follows from Liouville’s theorem. Moreover it shows that this behavior is typical of non constant analytic functions on \(\mathbb{C} \). Thus if a function is bounded it cannot be analytic on whole \(\mathbb{C} \).

We now show another application of Liouville’s theorem to prove the Fundamental Theorem of Algebra.

Theorem 4. Every polynomial \(p(z) \) of degree \(n \geq 1 \) has a root (in \(\mathbb{C} \)).

Proof. Suppose \(P(z) = z^n + a_{n-1}z^{n-1} + \ldots + a_0 \) is a polynomial with no root in \(\mathbb{C} \). Then \(\frac{1}{P(z)} \) is analytic on whole \(\mathbb{C} \). Since

\[
\left| \frac{P(z)}{z^n} \right| = \left| 1 + \frac{a_{n-1}}{z} + \ldots + \frac{a_0}{z^n} \right| \to 1, \text{ as } |z| \to \infty,
\]

it follows that \(|p(z)| \to \infty \) and hence \(|1/p(z)| \to 0 \) as \(|z| \to \infty \) (we are just proving a well known fact that polynomials are unbounded functions). Consequently \(\frac{1}{p(z)} \) is a bounded function. Hence by Liouville’s theorem \(\frac{1}{p(z)} \) is constant which is impossible. \(\Box \)

We will now prove a partial converse to Cauchy’s theorem

Theorem 5. (Morera’s theorem) If \(f \) is continuous in a simply connected domain \(D \) and if \(\int_C f(z) dz = 0 \) for every simple closed contour \(C \) in \(D \) then \(f \) is analytic

Proof. The idea is just to prove that there exists an analytic function \(F \) such that \(F' = f \). Then we can use CIF to conclude that \(f \) is analytic. So, fix a point \(z_0 \in D \) and define \(F(z) = \int_{z_0}^z f(w)dw \) (by hypothesis it does not matter which closed curve I use). By using continuity, we can show as before that \(F \) is analytic and \(F'' = f \). \(\Box \)

The next theorem shows that an analytic function is always given by a power series.
Theorem 6. (Taylor’s Theorem)
Let \(f \) be analytic on \(D = \{ z : |z - z_0| < R_0 \} \). Then
\[
f(z) = \sum_{n=0}^{\infty} a_n(z-z_0)^n, \quad \text{for all } z \in D,
\]
where \(a_n = \frac{f^{(n)}(z_0)}{n!} \) for \(n = 0, 1, 2, \ldots \).

Proof. (*) Without loss of generality we consider \(z_0 = 0 \). Fix \(z \in D \). Let \(|z| = r \) and \(C_0 \) be a circle with center 0 and radius \(r_0 \) such that \(r < r_0 < R_0 \). We need the following algebraic identity,
\[
\frac{1}{1-q} = 1 + q + q^2 + \ldots + q^{n-1} + \frac{q^n}{1-q},
\]
which follows easily from
\[
1 + q + q^2 + \ldots + q^{n-1} = \frac{1 - q^n}{1-q}.
\]
Thus for two complex numbers \(w \) and \(z \) we can write
\[
(0.1) \quad \frac{1}{w-z} = \frac{1}{w} + \frac{z}{w^2} + \frac{z^2}{w^3} + \ldots + \frac{z^{n-1}}{w^n} + \frac{z^n}{(w-z)w^n}.
\]
By CIF and (0.1) we now have
\[
f(z) = \frac{1}{2\pi i} \int_{C_0} \frac{f(z)dw}{w-z}
= \frac{1}{2\pi i} \int_{C_0} f(w) \left[\frac{1}{w} + \frac{z}{w^2} + \frac{z^2}{w^3} + \ldots + \frac{z^{n-1}}{w^n} \right] dw + \frac{z^n}{2\pi i} \int_{C_0} \frac{f(w)dw}{(w-z)w^n}
= f(0) + \frac{f'(0)}{1!} z + \frac{f''(0)}{2!} z^2 + \ldots + \frac{f^{(n-1)}(0)}{(n-1)!} z^{n-1} + \rho_n(z)
\]
where \(\rho_n(z) = \frac{z^n}{2\pi i} \int_{C_0} \frac{f(w)dw}{(w-z)w^n} \). Now, we just need to show that \(\lim_{n \to \infty} |\rho_n(z)| = 0 \).
Notice that the function \(w \to \frac{f(w)}{w-z} \) is a bounded function on the circle \(C_0 \) (as it is continuous). Thus by \(ML \) inequality it follows that
\[
|\rho_n(z)| \leq K r_0 \left| \frac{z}{r_0} \right|^n.
\]
As \(|z| = r < r_0 \) it follows that the right hand side goes to zero as \(n \to \infty \). \(\square \)