MTH 111-2023

Assignment 1 : Real Numbers, Sequences

1. Find the supremum of the set $\left\{\frac{m}{|m|+n}: n \in \mathbb{N}, m \in \mathbb{Z}\right\}$.
2. Let A be a non-empty subset of \mathbb{R} and $\alpha \in \mathbb{R}$. Show that $\alpha=\sup A$ if and only if $\alpha-\frac{1}{n}$ is not an upper bound of A but $\alpha+\frac{1}{n}$ is an upper bound of A for every $n \in \mathbb{N}$.
3. Let $y \in(1, \infty)$ and $x \in(0,1)$. Evaluate $\lim _{n \rightarrow \infty}(2 n)^{y} x^{n}$.
4. For $a \in \mathbb{R}$, let $x_{1}=a$ and $x_{n+1}=\frac{1}{4}\left(x_{n}^{2}+3\right)$ for all $n \in \mathbb{N}$. Show that $\left(x_{n}\right)$ converges if and only if $|a| \leq 3$. Moreover, find the limit of the sequence when it converges.
5. Show that the sequence $\left(x_{n}\right)$ defined by $x_{1}=\frac{1}{2}$ and $x_{n+1}=\frac{1}{7}\left(x_{n}^{3}+2\right)$ for $n \in \mathbb{N}$ satisfies the Cauchy criterion.
6. Let $x_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$ for $n \in \mathbb{N}$. Show that $\left|x_{2 n}-x_{n}\right| \geq \frac{1}{2}$ for every $n \in \mathbb{N}$. Does the sequence (x_{n}) satisfy the Cauchy criterion?
7. Let $\left(x_{n}\right)$ be defined by $x_{1}=1, x_{2}=2$ and $x_{n+2}=\frac{x_{n}+x_{n+1}}{2}$ for $n \geq 1$. Show that (x_{n}) converges. Further, by observing that $x_{n+2}+\frac{x_{n+1}}{2}=x_{n+1}+\frac{x_{n}}{2}$, find the limit of $\left(x_{n}\right)$.

Assignment 2 : Continuity, Existence of minimum, Intermediate Value Property

1. Let $[x]$ denote the integer part of the real number x. Suppose $f(x)=g(x) h(x)$ where $g(x)=$ $\left[x^{2}\right]$ and $h(x)=\sin 2 \pi x$. Discuss the continuity/discontinuity of f, g and h at $x=2$ and $x=\sqrt{2}$.
2. Determine the points of continuity for the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}2 x & \text { if } x \text { is rational } \\ x+3 & \text { if } x \text { is irrational. }\end{cases}
$$

3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function and let $x_{0}, c \in \mathbb{R}$. Show that if $f\left(x_{0}\right)>c$, then there exists a $\delta>0$ such that $f(x)>c$ for all $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$.
4. Let $f:[0,1] \rightarrow(0,1)$ be an on-to function. Show that f is not continuous on $[0,1]$.
5. Let $f:[a, b] \rightarrow \mathbb{R}$ and for every $x \in[a, b]$ there exists $y \in[a, b]$ such that $|f(y)|<\frac{1}{2}|f(x)|$. Find $\inf \{|f(x)|: x \in[a, b]\}$. Show that f is not continuous on $[a, b]$.
6. Let $f:[0,2] \rightarrow \mathbb{R}$ be a continuous function and $f(0)=f(2)$. Prove that there exist real numbers $x_{1}, x_{2} \in[0,2]$ such that $x_{2}-x_{1}=1$ and $f\left(x_{2}\right)=f\left(x_{1}\right)$.
7. Let p be an odd degree polynomial and $g: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded continuous function. Show that there exists $x_{0} \in \mathbb{R}$ such that $p\left(x_{0}\right)=g\left(x_{0}\right)$. Further show that the equation $x^{13}-3 x^{10}+4 x+\sin x=\frac{1}{1+x^{2}}+\cos ^{2} x$ has a solution in \mathbb{R}.

Assignment 3 : Derivatives, Maxima and Minima, Rolle's Theorem

1. Show that the function $f(x)=x|x|$ is differentiable at 0 . More generally, if f is continuous at 0 , then $g(x)=x f(x)$ is differentiable at 0 .
2. Prove that if $f: \mathbb{R} \longrightarrow \mathbb{R}$ is an even function (i.e., $f(-x)=f(x)$ for all $x \in \mathbb{R}$) and has a derivative at every point, then the derivative f^{\prime} is an odd function (i.e., $f(-x)=-f(x)$ for all $x \in \mathbb{R}$).
3. Show that among all triangles with given base and the corresponding vertex angle, the isosceles triangle has the maximum area.
4. Show that exactly two real values of x satisfy the equation $x^{2}=x \sin x+\cos x$.
5. Suppose f is continuous on $[a, b]$, differentiable on (a, b) and satisfies $f^{2}(a)-f^{2}(b)=a^{2}-b^{2}$. Then show that the equation $f^{\prime}(x) f(x)=x$ has at least one root in (a, b).
6. Let $f:(-1,1) \rightarrow \mathbb{R}$ be twice differentiable. Suppose $f\left(\frac{1}{n}\right)=0$ for all $n \in \mathbb{N}$. Show that $f^{\prime}(0)=f^{\prime \prime}(0)=0$.
7. Let $f:(-1,1) \rightarrow \mathbb{R}$ be a twice differentiable function such that $f^{\prime \prime}(0)>0$. Show that there exists $n \in \mathbb{N}$ such that $f\left(\frac{1}{n}\right) \neq 1$.

Assignment 4 : Mean Value Theorem, Taylor's Theorem, Curve Sketching

1. Show that $n y^{n-1}(x-y) \leq x^{n}-y^{n} \leq n x^{n-1}(x-y)$ if $0<y \leq x, n \in \mathbb{N}$.
2. Let $f:[0,1] \rightarrow \mathbb{R}$ be differentiable, $f\left(\frac{1}{2}\right)=\frac{1}{2}$ and $0<\alpha<1$. Suppose $\left|f^{\prime}(x)\right| \leq \alpha$ for all $x \in[0,1]$. Show that $|f(x)|<1$ for all $x \in[0,1]$.
3. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b). Suppose that $f(a)=a$ and $f(b)=b$. Show that there is $c \in(a, b)$ such that $f^{\prime}(c)=1$. Further, show that there are distinct $c_{1}, c_{2} \in(a, b)$ such that $f^{\prime}\left(c_{1}\right)+f^{\prime}\left(c_{2}\right)=2$.
4. Using Cauchy Mean Value Theorem, show that
(a) $1-\frac{x^{2}}{2!}<\cos x$ for $x \neq 0$.
(b) $x-\frac{x^{3}}{3!}<\sin x$ for $x>0$.
5. Find $\lim _{x \longrightarrow 5}(6-x)^{\frac{1}{x-5}}$ and $\lim _{x \longrightarrow 0^{+}}\left(1+\frac{1}{x}\right)^{x}$.
6. Sketch the graphs of $f(x)=x^{3}-6 x^{2}+9 x+1$ and $f(x)=\frac{x^{2}}{x^{2}-1}$.
7. (a) Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{\prime \prime}(x) \geq 0$ for all $x \in[a, b]$. Suppose $x_{0} \in[a, b]$. Show that for any $x \in[a, b]$

$$
f(x) \geq f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

i.e., the graph of f lies above the tangent line to the graph at $\left(x_{0}, f\left(x_{0}\right)\right)$.
(b) Show that $\cos y-\cos x \geq(x-y) \sin x$ for all $x, y \in\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$.
8. Suppose f is a three times differentiable function on $[-1,1]$ such that $f(-1)=0, f(1)=1$ and $f^{\prime}(0)=0$. Using Taylor's theorem show that $f^{\prime \prime \prime}(c) \geq 3$ for some $c \in(-1,1)$.

Assignment 5 : Series, Power Series, Taylor Series

1. Let $f:[0,1] \rightarrow \mathbb{R}$ and $a_{n}=f\left(\frac{1}{n}\right)-f\left(\frac{1}{n+1}\right)$. Show that if f is continuous then $\sum_{n=1}^{\infty} a_{n}$ converges and if f is differentiable and $\left|f^{\prime}(x)\right|<1$ for all $x \in[0,1]$ then $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges.
2. In each of the following cases, discuss the convergence/divergence of the series $\sum_{n=1}^{\infty} a_{n}$ where a_{n} equals:
(a) $\frac{\sqrt{n+1}-\sqrt{n}}{n}$
(b) $1-\cos \frac{1}{n}$
(c) $2^{-n-(-1)^{n}}$
(d) $\left(1+\frac{1}{n}\right)^{n(n+1)}$
(e) $\frac{n \ln n}{2^{n}}$
(f) $\frac{\log n}{n^{p}},(p>1)$
(g) $e^{-n}(\cos n) n^{2} \sin \frac{1}{n}$
3. Let $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ be series of positive terms satisfying $\frac{a_{n+1}}{a_{n}} \leq \frac{b_{n+1}}{b_{n}}$ for all $n \geq N$. Show that if $\sum_{n=1}^{\infty} b_{n}$ converges then $\sum_{n=1}^{\infty} a_{n}$ also converges. Test the series $\sum_{n=1}^{\infty} \frac{n^{n-2}}{e^{n} n!}$ for convergence.
4. Show that the series $\frac{1}{4^{1}}+\frac{1}{5^{2}}+\frac{3}{4^{3}}+\frac{1}{5^{4}}+\frac{5}{4^{5}}+\frac{1}{5^{6}}+\frac{7}{4^{7}}+\cdots$ converges.
5. Show that the series $\sum_{n=1}^{\infty}(-1)^{n} \sin \frac{1}{n}$ converges but not absolutely.
6. Determine the values of x for which the series $\sum_{n=1}^{\infty} \frac{(x-1)^{2 n}}{n^{2} 3^{n}}$ converges.
7. Show that $\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}, x \in \mathbb{R}$.

Assignment 6: Integration

1. Using Riemann's criterion for the integrability, show that $f(x)=\frac{1}{x}$ is integrable on $[1,2]$.
2. If f and g are continuous functions on $[a, b]$ and if $g(x) \geq 0$ for $a \leq x \leq b$, then show the mean value theorem for integrals : there exists $c \in[a, b]$ such that $\int_{a}^{b} f(x) g(x) d x=f(c) \int_{a}^{b} g(x) d x$.
(a) Show that there is no continuous function f on $[0,1]$ such that $\int_{0}^{1} x^{n} f(x) d x=\frac{1}{\sqrt{n}}$ for all $n \in$ \mathbb{N}.
(b) If f is contiunuous on $[a, b]$ then show that there exists $c \in[a, b]$ such that $\int_{a}^{b} f(x) d x=$ $f(c)(b-a)$.
(c) If f and g are continuous on $[a, b]$ and $\int_{a}^{b} f(x) d x=\int_{a}^{b} g(x) d x$ then show that there exists $c \in[a, b]$ such that $f(c)=g(c)$.
3. Let $f:[0,2] \rightarrow \mathbb{R}$ be a continuous function such that $\int_{0}^{2} f(x) d x=2$. Find the value of $\int_{0}^{2}\left[x f(x)+\int_{0}^{x} f(t) d t\right] d x$.
4. Show that $\int_{0}^{x}\left(\int_{0}^{u} f(t) d t\right) d u=\int_{0}^{x} f(u)(x-u) d u$, assuming f to be continuous.
5. Let $f:[0,1] \rightarrow \mathbb{R}$ be a positive continuous function. Show that $\lim _{n \rightarrow \infty}\left(f\left(\frac{1}{n}\right) f\left(\frac{2}{n}\right) \cdots f\left(\frac{n}{n}\right)\right)^{\frac{1}{n}}=$ $e^{\int_{0}^{1} \ln f(x)}$.

Assignment 7: Improper Integrals

1. Test the convergence/divergence of the following improper integrals:
(a) $\int_{0}^{1} \frac{d x}{\log (1+\sqrt{x})}$
(b) $\int_{0}^{1} \frac{d x}{x-\log (1+x)}$
(c) $\int_{0}^{1} \frac{\log x}{\sqrt{x}}$
(d) $\int_{0}^{1} \sin (1 / x) d x$.
(e) $\int_{1}^{\infty} \frac{\sin (1 / x)}{x} d x$
(f) $\int_{0}^{\infty} e^{-x^{2}} d x$
(g) $\int_{0}^{\infty} \sin x^{2} d x$,
(h) $\int_{0}^{\pi / 2} \cot x d x$.
2. Determine all those values of p for which the improper integral $\int_{0}^{\infty} \frac{1-e^{-x}}{x^{p}} d x$ converges.
3. Show that the integrals $\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x$ and $\int_{0}^{\infty} \frac{\sin x}{x} d x$ converge. Further, prove that $\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x=$ $\int_{0}^{\infty} \frac{\sin x}{x} d x$.
4. Show that $\int_{0}^{\infty} \frac{x \log x}{\left(1+x^{2}\right)^{2}} d x=0$.
5. Prove the following statements.
(a) Let f be an increasing function on $(0,1)$ and the improper integral $\int_{0}^{1} f(x)$ exist. Then
i. $\int_{0}^{1-\frac{1}{n}} f(x) d x \leq \frac{f\left(\frac{1}{n}\right)+f\left(\frac{2}{n}\right)+\cdots+f\left(\frac{n-1}{n}\right)}{n} \leq \int_{\frac{1}{n}}^{1} f(x) d x$.
ii. $\lim _{n \rightarrow \infty} \frac{f\left(\frac{1}{n}\right)+f\left(\frac{2}{n}\right)+\cdots+f\left(\frac{n-1}{n}\right)}{n}=\int_{0}^{1} f(x) d x$.
(b) $\lim _{n \rightarrow \infty} \frac{\ln \frac{1}{n}+\ln \frac{2}{n}+\cdots+\ln \frac{n-1}{n}}{n}=-1$.
(c) $\lim _{n \rightarrow \infty} \frac{\sqrt[n]{n!}}{n}=\frac{1}{e}$.
