
MTH 111-2023
Assignment 1 : Real Numbers, Sequences

1. Find the supremum of the set { m
|m|+n : n ∈ N,m ∈ Z}.

2. Let A be a non-empty subset of R and α ∈ R. Show that α = supA if and only if α − 1
n is

not an upper bound of A but α+ 1
n is an upper bound of A for every n ∈ N.

3. Let y ∈ (1,∞) and x ∈ (0, 1). Evaluate limn→∞(2n)yxn.

4. For a ∈ R, let x1 = a and xn+1 = 1
4(x2n + 3) for all n ∈ N. Show that (xn) converges if and

only if |a| ≤ 3. Moreover, find the limit of the sequence when it converges.

5. Show that the sequence (xn) defined by x1 = 1
2 and xn+1 = 1

7

(
x3n + 2

)
for n ∈ N satisfies the

Cauchy criterion.

6. Let xn = 1 + 1
2 + 1

3 + ...+ 1
n for n ∈ N. Show that |x2n − xn| ≥ 1

2 for every n ∈ N. Does the
sequence (xn) satisfy the Cauchy criterion ?

7. Let (xn) be defined by x1 = 1, x2 = 2 and xn+2 = xn+xn+1

2 for n ≥ 1. Show that (xn)
converges. Further, by observing that xn+2 + xn+1

2 = xn+1 + xn
2 , find the limit of (xn).

Assignment 2 : Continuity, Existence of minimum, Intermediate Value Property

1. Let [x] denote the integer part of the real number x. Suppose f(x) = g(x)h(x) where g(x) =
[x2] and h(x) = sin 2πx. Discuss the continuity/discontinuity of f, g and h at x = 2 and
x =
√

2.

2. Determine the points of continuity for the function f : R→ R defined by

f(x) =

{
2x if x is rational
x+ 3 if x is irrational.

3. Let f : R→ R be a continuous function and let x0, c ∈ R. Show that if f(x0) > c, then there
exists a δ > 0 such that f(x) > c for all x ∈ (x0 − δ, x0 + δ).

4. Let f : [0, 1]→ (0, 1) be an on-to function. Show that f is not continuous on [0, 1].

5. Let f : [a, b] → R and for every x ∈ [a, b] there exists y ∈ [a, b] such that |f(y)| < 1
2 |f(x)|.

Find inf{|f(x)| : x ∈ [a, b]}. Show that f is not continuous on [a, b].

6. Let f : [0, 2] → R be a continuous function and f(0) = f(2). Prove that there exist real
numbers x1, x2 ∈ [0, 2] such that x2 − x1 = 1 and f(x2) = f(x1).

7. Let p be an odd degree polynomial and g : R → R be a bounded continuous function.
Show that there exists x0 ∈ R such that p(x0) = g(x0). Further show that the equation
x13 − 3x10 + 4x+ sinx = 1

1+x2
+ cos2x has a solution in R.

Assignment 3 : Derivatives, Maxima and Minima, Rolle’s Theorem

1. Show that the function f(x) = x | x | is differentiable at 0. More generally, if f is continuous
at 0, then g(x) = xf(x) is differentiable at 0.



2. Prove that if f : R−→R is an even function (i.e., f(−x) = f(x) for all x ∈ R) and has a
derivative at every point, then the derivative f ′ is an odd function (i.e.,f(−x) = −f(x) for
all x ∈ R).

3. Show that among all triangles with given base and the corresponding vertex angle, the isosceles
triangle has the maximum area.

4. Show that exactly two real values of x satisfy the equation x2 = xsinx+ cosx.

5. Suppose f is continuous on [a, b], differentiable on (a, b) and satisfies f2(a)−f2(b) = a2−b2.
Then show that the equation f ′(x)f(x) = x has at least one root in (a, b).

6. Let f : (−1, 1) → R be twice differentiable. Suppose f( 1
n) = 0 for all n ∈ N. Show that

f ′(0) = f ′′(0) = 0.

7. Let f : (−1, 1) → R be a twice differentiable function such that f ′′(0) > 0. Show that there
exists n ∈ N such that f( 1

n) 6= 1.

Assignment 4 : Mean Value Theorem, Taylor’s Theorem, Curve Sketching

1. Show that nyn−1(x− y) ≤ xn − yn ≤ nxn−1(x− y) if 0 < y ≤ x, n ∈ N.

2. Let f : [0, 1] → R be differentiable, f(12) = 1
2 and 0 < α < 1. Suppose |f ′(x)| ≤ α for all

x ∈ [0, 1]. Show that |f(x)| < 1 for all x ∈ [0, 1].

3. Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b). Suppose that f(a) = a
and f(b) = b. Show that there is c ∈ (a, b) such that f ′(c) = 1. Further, show that there are
distinct c1, c2 ∈ (a, b) such that f ′(c1) + f ′(c2) = 2.

4. Using Cauchy Mean Value Theorem, show that

(a) 1− x2

2! < cosx for x 6= 0.

(b) x− x3

3! < sinx for x > 0.

5. Find lim
x−→5

(6− x)
1

x−5 and lim
x−→0+

(1 + 1
x)x.

6. Sketch the graphs of f(x) = x3 − 6x2 + 9x+ 1 and f(x) = x2

x2−1 .

7. (a) Let f : [a, b] → R be such that f ′′(x) ≥ 0 for all x ∈ [a, b]. Suppose x0 ∈ [a, b]. Show
that for any x ∈ [a, b]

f(x) ≥ f(x0) + f ′(x0)(x− x0)

i.e., the graph of f lies above the tangent line to the graph at (x0, f(x0)).

(b) Show that cos y − cosx ≥ (x− y) sinx for all x, y ∈ [π2 ,
3π
2 ].

8. Suppose f is a three times differentiable function on [−1, 1] such that f(−1) = 0, f(1) = 1
and f ′(0) = 0. Using Taylor’s theorem show that f ′′′(c) ≥ 3 for some c ∈ (−1, 1).

Assignment 5 : Series, Power Series, Taylor Series

1. Let f : [0, 1] → R and an = f( 1
n) − f( 1

n+1). Show that if f is continuous then
∑∞

n=1 an
converges and if f is differentiable and |f ′(x)| < 1 for all x ∈ [0, 1] then

∑∞
n=1 |an| converges.

2. In each of the following cases, discuss the convergence/divergence of the series
∑∞

n=1 an where
an equals:



(a)
√
n+1−

√
n

n (b) 1−cos 1
n (c) 2−n−(−1)

n
(d)

(
1 + 1

n

)n(n+1)

(e) n lnn
2n (f) logn

np , (p > 1) (g) e−n(cosn)n2 sin 1
n

3. Let
∞∑
n=1

an and
∞∑
n=1

bn be series of positive terms satisfying an+1

an
≤ bn+1

bn
for all n ≥ N. Show

that if
∞∑
n=1

bn converges then
∞∑
n=1

an also converges. Test the series
∞∑
n=1

nn−2

enn! for convergence.

4. Show that the series 1
41

+ 1
52

+ 3
43

+ 1
54

+ 5
45

+ 1
56

+ 7
47

+ · · · converges.

5. Show that the series
∑∞

n=1(−1)n sin 1
n converges but not absolutely.

6. Determine the values of x for which the series
∞∑
n=1

(x−1)2n
n23n

converges.

7. Show that cosx =
∑∞

n=0
(−1)n
(2n)! x

2n, x ∈ R.

Assignment 6: Integration

1. Using Riemann’s criterion for the integrability, show that f(x) = 1
x is integrable on [1, 2].

2. If f and g are continuous functions on [a, b] and if g(x) ≥ 0 for a ≤ x ≤ b, then show the mean

value theorem for integrals : there exists c ∈ [a, b] such that
b∫
a
f(x)g(x)dx = f(c)

b∫
a
g(x)dx.

(a) Show that there is no continuous function f on [0, 1] such that
1∫
0

xnf(x)dx = 1√
n

for all n ∈

N.

(b) If f is contiunuous on [a, b] then show that there exists c ∈ [a, b] such that
∫ b
a f(x)dx =

f(c)(b− a).

(c) If f and g are continuous on [a, b] and
∫ b
a f(x)dx =

∫ b
a g(x)dx then show that there exists

c ∈ [a, b] such that f(c) = g(c).

3. Let f : [0, 2] → R be a continuous function such that
∫ 2
0 f(x)dx = 2. Find the value of∫ 2

0 [xf(x) +
∫ x
0 f(t)dt]dx.

4. Show that
x∫
0

(
u∫
0

f(t)dt)du =
x∫
0

f(u)(x− u)du, assuming f to be continuous.

5. Let f : [0, 1]→ R be a positive continuous function. Show that limn→∞(f( 1
n)f( 2

n)···f(nn))
1
n =

e
∫ 1
0 lnf(x).

Assignment 7: Improper Integrals

1. Test the convergence/divergence of the following improper integrals:

(a)
1∫
0

dx
log(1+

√
x)

(b)
1∫
0

dx
x−log(1+x) (c)

1∫
0

log x√
x

(d)
1∫
0

sin(1/x)dx.

(e)
∞∫
1

sin(1/x)
x dx (f)

∞∫
0

e−x
2
dx (g)

∞∫
0

sinx2dx, (h)
π/2∫
0

cotxdx.

2. Determine all those values of p for which the improper integral
∫∞
0

1−e−x

xp dx converges.



3. Show that the integrals
∞∫
0

sin2 x
x2

dx and
∞∫
0

sinx
x dx converge. Further, prove that

∞∫
0

sin2 x
x2

dx =

∞∫
0

sinx
x dx.

4. Show that
∞∫
0

x log x
(1+x2)2

dx = 0.

5. Prove the following statements.

(a) Let f be an increasing function on (0,1) and the improper integral
∫ 1
0 f(x) exist. Then

i.
∫ 1− 1

n
0 f(x)dx ≤ f( 1

n
)+f( 2

n
)+···+f(n−1

n
)

n ≤
∫ 1

1
n
f(x)dx.

ii. limn→∞
f( 1

n
)+f( 2

n
)+···+f(n−1

n
)

n =
∫ 1
0 f(x)dx.

(b) limn→∞
ln 1

n
+ln 2

n
+···+lnn−1

n
n = −1.

(c) limn→∞
n√
n!
n = 1

e .


