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Lecture 11: Fixed Point Iteration Method, Newton’s Method

In Lecture 7, we have seen some applications of the MVT. In this lecture, we will see that some
important results which deal with some numerical methods are proved using the MVT.

In this lecture, we discuss the problem of finding approximate solutions to the equation

f(x) = 0 (1)

for a given f . In many cases, it is not possible to find the exact solutions to equation (1). Even if
f(x) is a quadratic or cubic polynomial, the (real) solutions to the equation (1) could be irrationals.
Therefore, it is natural to look for approximate solutions using some (numerical) methods. Here,
we discuss a method called fixed point iteration method and a particular case of this method, called
Newton’s method.

Fixed Point Iteration Method (or Picard’s Method)

In this method, we first change the equation (1) to a form called fixed point form

x = g(x) (2)

in such a way that any solution to equation (2) is a solution to equation (1).

Let us see some examples of g for a given f . Consider the equation f(x) = 0 where f(x) =
x3 + 7x − 2. We can change the equation f(x) = 0 to a fixed point form x = g(x) in many ways
such as:

1. x = g1(x) = x− x3 − 7x+ 2 = 2− 6x− x3

2. x = g2(x) =
1
7(2− x3)

3. x = g3(x) = x− ex(x3 + 7x− 2)

For finding approximate solutions to equation (2), we consider the following method.

Picard’s Method: Start from an initial point x0 and consider the recursive process

xn+1 = g(xn), n = 0, 1, 2, ... (3)

Such a sequence (xn) is called a Picard sequence (for g and x0). Observe that if a Picard sequence
(xn) converges to some `0 and g is continuous at `0 then g(xn) = xn+1 → `0 and g(xn) → g(`0).
Therefore g(`0) = `0, that is, `0 is a fixed point of g. Hence `0 is a solution to equation (1).

From the above discussion, we conclude that if a Picard sequence (xn) for g mentioned in (2)
converges and g is continuous, then xn (for a large n) can be considered as an approximate solution
to equation (1). But, why should (xn) converge? In this regard, let us see some examples below.

Consider the equation f(x) = x3 + 7x − 2 = 0 as mentioned above. Observing that f is
strictly increasing and using the IVT, it is easy to verify that the equation f(x) = 0 has a unique
(real) solution and the same lies in [0, 1]. If we consider x = g2(x) = 1

7(2 − x3), x0 ∈ [0, 1] and
xn+1 = g2(xn) for n = 0, 1, 2, ..., then (xn) converges which can be verified as follows. Note that
since x0 ∈ [0, 1],

|xn+2 − xn+1| =
1

7
|x3n+1 − x3n| =

1

7
|x2n+1 + xn+1xn + x2n||xn+1 − xn| ≤

3

7
|xn+1 − xn|.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in these notes.
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This shows that (xn) satisfies the Cauchy criterion and hence it converges. Whereas, if we start
with, for example, x0 = 10 then the sequence (xn) does not converge. If we consider x = g1(x) =
2− 6x− x3 and xn+1 = g1(xn) for n = 0, 1, 2, ..., then (xn) diverges for the initial value x0 = 0 or
x0 = 1.

It is clear from the above examples that the convergence of a Picard sequence for g and x0
depends on g and the starting point x0. Moreover, in general, showing the convergence of a Picard
sequence is not easy. The following result which is a consequence of the MVT gives sufficient
conditions for the convergence of the Picard sequences.

Theorem 11.1 (Picard’s Theorem). Let g : [a, b] → [a, b] be a differentiable function such that

|g′(x)| ≤ α < 1 for all x ∈ [a, b]. (4)

Then g has exactly one fixed point l0 in [a, b] and the Picard sequence for g with an initial point
x0 ∈ [a, b] converges to l0.

Proof. Let (xn) be the Picard’s sequence for g with the intial point x0. Then, by the MVT, there
exists c between xn and xn+1 such that,

|xn+2 − xn+1| = |g(xn+1)− g(xn)| = |g′(c)||xn+1 − xn| < α|xn+1 − xn|.

Since (xn) satisfies the Cauchy criterion, let xn → `0 for some `0 ∈ [a, b]. By the continuity of g, `0
is a fixed point of g.

If g(`) = ` for some ` ∈ [a, b] and ` 6= `0. Then, again by the MVT, there exists c1 between `
and `0 such that

|`0 − `| = |g(`)− g(`0)| = |g′(c1)||`0 − `| < |`0 − `|

which is a contradiction. Therefore, g has exactly one fixed point in [a, b]. �

Remark 11.1. The assumption that |g′(x)| ≤ α < 1 for all x ∈ [a, b] appearing in Picard’s
theorem can be replaced by the weaker assumption that |g′(x)| < 1 for all x ∈ (a, b). A proof of
Picard’s theorem with the weaker assumption is outlined in Problem 8 in PP 11.

The convergence of a Picard sequence is illustrated in Figure.

Example 11.1. (i) For g2(x) =
1
7(2 − x3), it is clear that g2 : [0, 1] → [0, 1] and |g′(x)| < 3

7 for
all x ∈ [0, 1]. Hence by Theorem 11.1, g2 has a unique fixed point in [0, 1]. Further, the Picard
sequence for g2 and any x0 ∈ [0, 1] converges to the fixed point of g2 in [0, 1]. The first five terms
of the Picard sequence for g2 and x0 =

3
4 , are the following

x1 = 0.2254, x2 = 0.2841, x3 = 0.2824, x4 = 0.2825, x5 = 0.2825.

Since the fixed point of g2 in [0, 1] is the solution to x3− 7x+2 = 0, x5 = 0.2825 can be considered
as an approximate value of the solution to the equation x3 − 7x + 2 = 0. Here it is natural to
consider the interval [0, 1], because, the solution to x3 − 7x+ 2 = 0 lies in [0, 1].

(ii) For g1(x) = 2 − 6x − x3, we see that g1 does not map [0, 1] into itself and further |g′(x)| > 1
for all x ∈ [0, 1]. Hence Theorem 11.1 cannot be applied in this case. Although Theorem 11.1
does not say that a Picard sequence for g1 does not converge, there is no guarantee that it can
converge. In this sense, the choice of g2 is preferable for finding approximate solutions to the
equation x3 − 7x+ 2 = 0.



3

Figure 1: Picard sequence

(iii) Let g : [0, 1] → [0, 1] be defined by g(x) = x2 for all x ∈ [0, 1]. Note that 0 and 1 are fixed
points of g. In this case |g′(x) � 1 for all x ∈ [0, 1]. However, every Picard sequence corresponding
to g and any x ∈ [0, 1] converges to a fixed point of g.

(iv) Consider g(x) = x2+2
4 for all x ∈ [0, 1]. Since g(0) = 2

4 , g(1) = 3
4 and g is increasing,

g : [0, 1] → [0, 1]. Observe that |g′(x)| ≤ 1
2 for all x ∈ [0, 1]. By Theorem 11.1, g has a unique fixed

point. Further, the Picard sequence for g and any x ∈ [0, 1] converges to the fixed point of g in

[0, 1]. For finding the fixed point of g in [0, 1], let x0 ∈ [0, 1] be the fixed point of g. Then x0 =
x2
0+2
4

which implies that x0 = 2−
√
2.

If a function g satisfies the conditions stated in Theorem 11.1, then the initial point x0 can be
chosen in [a, b] so that the corresponding Picard sequence converges. In many cases, it is difficult
to find a and b such that {g(x) : x ∈ [a, b]} ⊆ [a, b] as stated in Theorem 11.1. In such cases,
how do we pick an initial point? Can we at least expect that if the initial point x0 is closer to a
fixed point, then the corresponding Picard sequence converges? The following result which is also
a consequence of the MVT addresses the proceeding question.

Theorem 11.2. Let l0 be a fixed point of g. Suppose that g′ is continuous in some open interval
containing l0. If |g′(l0)| < 1 then there exists ε > 0 such that g : [l0 − ε, l0 + ε] → [l0 − ε, l0 + ε].
Further, the Picard sequence for g with any initial point x0 ∈ [l0 − ε, l0 + ε] converges to l0.

Proof (*). Since |g′(l0)| < 1, find some α > 0 such that |g′(l0)| < α < 1. By the continuity of
g′ we find ε > 0 (see Problem 10 in PP 5) such that |g′(x)| < α for all x ∈ [l0 − ε, l0 + ε]. Let
x ∈ [l0 − ε, l0 + ε] and x 6= l0. Then by the MVT there exists c between l0 and x such that

|g(x)− l0| = |g(x)− g(l0)| = |g′(c)||x− l0| < αε < ε.

This shows that {g(x) : x ∈ [l0 − ε, l0 + ε]} ⊆ [l0 − ε, l0 + ε]. The rest of the proof follows from
Theorem 11.1. �

Newton’s Method (or Newton-Raphson Method)

Newton’s method is used for finding approximate solutions to the equation f(x) = 0 for a given
f . We have already seen that Picard’s method can be used for such purpose. However, in order
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to use Picard’s method, we need to convert the equation f(x) = 0 to a fixed point form x = g(x).
We have also seen that all fixed point forms may not be suitable for applying Picard’s method. We
will see that Newton’s method uses a particular fixed point form x = g(x) for a given f . Hence,
Newton’s method is a particular case of Picard’s method.

Newton’s iterative method: For a given f , start from an initial point x0 such that f ′(x0) 6= 0
and consider the recursive process

xn+1 = xn − f(xn)

f ′(xn)
, n = 0, 1, 2, .... (5)

when f ′(xn) 6= 0. The sequence (xn) generated by the process (5) is called a Newton sequence (for
f and x0).

Remark 11.2. Suppose that a Newton sequence (xn) converges to some l0 and (f ′(xn)) is bounded.
Then f(xn) = f ′(xn)(xn−xn+1) → 0 and f(xn) → f(l0). Therefore f(l0) = 0. Such xn (for a large
n) can be considered as an approximate solution to the equation f(x) = 0.

Observe that a sequence (xn) is a Newton sequence for f if and only if (xn) is a Picard sequence

for g where g(x) = x − f(x)
f ′(x) . Hence the sufficient conditions for the convergence of the Picard

sequences given in Theorem 11.1 and Remark 11.1 can be used for the convergence of the Newton
sequences (see Problem 7 in PP 11).

Example 11.2. Suppose that f(x) = x2 − 2 and we look for the positive root of f(x) = 0. Since
f ′(x) = 2x, the iterative process of Newton’s method is xn+1 = 1

2(xn + 2
xn

), n = 0, 1, 2, .... The

convergence of (xn) to
√
2 is discussed in Problem 5 in PP3 The convergence of (xn) can also be

derived from Theorem 11.1 by taking g(x) = 1
2(x + 2

x), x ∈ [1, 2] (see Problem 7 in PP 11). The
first four terms of the Newton sequence for f and x0 = 2, are the following

x1 = 1.5, x2 = 1.4166, x3 = 1.4142, x4 = 1.4142.

Hence 1.4142 is considered as an approximate value of
√
2.

Geometric interpretation of the iterative process of Newton’s method: Suppose that we
have found xn and f ′(xn) 6= 0. To find xn+1, we approximate the graph of y = f(x) near the
point (xn, f(xn)) by the tangent: y − f(xn) = f ′(xn)(x − xn). Observe that xn+1 is the point of
intersection of the x-axis and the tangent to the graph of y = f(x) at (xn, f(xn)). See the following
figure.


