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Lectures 14: Ratio Test and Root Test

For using the comparison test and the limit comparison test, the given series needs to be
compared with a series whose behavior is already known. In many cases, it is difficult to apply
these tests. For instance, consider the series

∑∞
n=1

2n

n! . In this example, the factorial makes it
difficult for employing the tests mentioned above. In the ratio test and the root test, we will decide
the convergence/divergence of a given series

∑∞
n=1 an by looking into the behaviors of the ratio

|an+1

an
| (when an 6= 0 for all n) and the root |an|1/n respectively.

Ratio test

We have already seen in Lecture 12 that if
∑∞

n=1 an converges then an → 0 but the converse
need not be true. But if the terms a′ns get smaller such as |an| ≤ rn for some r ∈ (0, 1), then by
the comparison test, the series

∑∞
n=1 an converges absolutely. The next result explains that under

certain condition on |an+1

an
| the terms of the series can get smaller (as given above) so that

∑∞
n=1 an

converges absolutely.

The following result is a consequence of the comparison test.

Theorem 14.1. Consider the series
∑∞

n=1 an, an 6= 0 for all n. Suppose there exists r ∈ (0, 1) and
N ∈ N such that |an+1

an
| ≤ r for all n ≥ N . Then

∑∞
n=1 |an| converges.

Proof. Note that |an+1| ≤ r | an | for all n ≥ N . Hence

aN+2 ≤ r|aN+1| < r · r|aN |.

Continue this process and obtain that |aN+k| ≤ rk|aN | for all k ≥ 1. Since N is constant, by the
the comparison test,

∑∞
k=1 aN+k converges which implies that

∑∞
n=1 an converges. �

Example 14.1. Consider the series
∑∞

n=1 an where a2n−1 =
1

4n−1 and a2n = 1
3×4n−1 for all n ∈ N.

Since a2n
a2n−1

= 1
3 and a2n+1

a2n
= 3

4 , we have |
an+1

an
| ≤ 3

4 for all n ∈ N. Hence, by Theorem 14.1,
∑∞

n=1 an
converges. Alternatively,

∑∞
n=1 an can be considered as sum of two convergent series and shown

that it converges.

Employing Theorem 14.1 for testing the convergence of a given series is not an easy task because
of the difficulty involved in finding an upper bound r, satisfying |an+1

an
| ≤ r for all n ≥ N . The

following result, which is easier to use, is a consequence of Theorem 14.1.

Theorem 14.2 (Ratio test). Suppose an 6= 0 for all n and |an+1

an
| → L for some L ∈ R ∪ {∞}.

(1) If L < 1 then
∑∞

n=1 | an | converges.

(2) If L > 1 then
∑∞

n=1 an diverges.

Proof. (1) Since |an+1

an
| → L and L < 1, there exists N ∈ N such that | an+1

an
| < L+ (1−L)

2 for all

n ≥ N . Denote L+ (1−L)
2 by r and note that r ∈ (0, 1). By Theorem 14.1,

∑∞
n=1 | an | converges.

(2) Since |an+1

an
| → L and L > 1, there exists N ∈ N such that |an+1

an
| > 1 for all n ≥ N . This

shows that |an+1| > |an| for all n ≥ N which implies that an 9 0. Hence
∑∞

n=1 an diverges. �

Example 14.2. 1.
∑∞

n=1
2n

n! converges because an+1

an
→ 0.
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2.
∑∞

n=1
nn

n! diverges because, by Example 8.5, an+1

an
= (1 + 1

n)
n → e > 1 whereas

∑∞
n=1

n!
nn

converges.

3.
∑∞

n=1
2nn!
nn converges whereas

∑∞
n=1

3nn!
nn diverges.

4. We know that
∑∞

n=1
1
n diverges and

∑∞
n=1

1
n2 converges. However, in both these cases an+1

an
→ 1.

This demonstrates that if L = 1 in the ratio test then the test is inconclusive, i.e., the series could
either converge or diverge

Root test

We will see that the root test, which will be stated, is suitable in many cases for determining
the convergence/divergence of series compared to the ratio test. The following result is analogous
to Theorem 14.1.

Theorem 14.3. Consider the series
∑∞

n=1 an. Suppose there exists r ∈ (0, 1) and N ∈ N such that
|an|1/n ≤ r for all n ≥ N . Then

∑∞
n=1 |an| converges.

Proof. If |an|1/n ≤ r for all n ≥ N , then |an| ≤ rn for all n ≥ N . Hence, by the the comparison
test,

∑∞
k=1 |aN+k| converges which implies that

∑∞
n=1 |an| converges. �

The following result, which is analogous to Theorem 14.2, is a consequence of Theorem 14.3.

Theorem 14.4 (Root test). Consider the series
∑∞

n=1 an. Suppose |an|1/n → L for some L.

(1) If L < 1 then
∑∞

n=1 |an| converges.

(2) If L > 1 then
∑∞

n=1 an diverges.

Proof. The proof is similar to proof of Theorem 14.2.

(1) Since |an|1/n → L and L < 1, there exists N ∈ N such that |an|1/n < L+ (1−L)
2 for all n ≥ N .

Denote L+ (1−L)
2 by r and note that r ∈ (0, 1). By Theorem 14.3,

∑∞
n=1 | an | converges.

(2) Observe that if L > 1, then an 9 0. Hence
∑∞

n=1 an diverges. �

Example 14.3.

1.
∑∞

n=2
1

(ln n)n converges because a
1/n
n = 1

ln n → 0.

2.
∑∞

n=1(n
1/n − 1)n converges as a

1/n
n = n1/n − 1 → 0. However,

∑∞
n=1(3n

1/n − 1)n diverges.

3.
∑∞

n=1(
n

n+1)
n2

converges because a
1/n
n = 1

(1+ 1
n
)n

→ 1
e < 1.

4.
∑∞

n=1
1
n diverges and

∑∞
n=1

1
n2 converges. However, in both these cases, a

1/n
n → 1.


