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Lecture 16: Riemann Integration (Part I)

At the high school level the indefinite and definite integrals are introduced as follows. For a
given function f if there exists F such that F ′(x) = f(x) for all x in the domain of f , then the
indefinite integral

∫
f(x)dx is defined to be F (x) + C where C is a constant. Whereas, if f is

continuous on [a, b], then the definite integral
∫ b
a f(x)dx is defined (but not in a rigorous manner)

as the area of the region bounded by the curve y = f(x), a ≤ x ≤ b, the x-axis and the ordinates
x = a and x = b. Usually, at the school level the following important result called Fundamental
Theorem of Calculus (FTC), which enables us to evaluate definite integrals by making use of the
indefinite integral, is stated without proof.

Theorem (FTC). If f : [a, b] → R is continuous and F ′(x) = f(x) for all x ∈ [a, b], then∫ b
a f(x)dx = F (b)− F (a).

In this course, we define the definite integral (for functions which need not be continuous) in
a rigorous manner and prove a stronger form of the FTC. We will not discuss the methods of
evaluating the indefinite integrals as they are covered in the school level. However, we will present
some applications of integration.

We will define the (definite) integral as the area of a region under a graph. A basic question is
how to define the said area.

Let us look at a justification for defining the area of the region enclosed by a circle of radius
r. We assume that we know the area of a given triangle and we approximate the region enclosed
by the given circle as follows. For an arbitrary n, consider the n equal inscribed and superscibed
triangles as shown in Figure 1.

Observe that the total area of the inscribed triangles is nr2sin(π/n)cos(π/n) and superscribed
triangles is nr2tan(π/n) (see Problem 1 of PP 16). Further, both (nr2sin(π/n)cos(π/n)) and
(nr2tan(π/n)) converge to πr2. We will use this idea to define and evaluate the area of
the region under a graph of a function.

Suppose f is a non-negative bounded function defined on an interval [a, b]. We first subdivide
the interval into a finite number of subintervals. Then we squeeze the region under the graph of
f between the region covered by the inscribed and superscribed rectangles constructed over the
subintervals as shown in Figure 2. If the total areas of the inscribed and superscribed rectangles
come closer to a common value as we make the partition of [a, b] finer and finer then the area of
the region under the graph of f can be defined as this common value and f is said to be integrable.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in these notes.



2

Let us define whatever has been explained above formally.

The Riemann Integral

Let [a, b] be a given interval. A partition P of [a, b] is a finite set of points x0, x1, x2, . . . , xn such
that a = x0 < x1 < · · · < xn−1 < xn = b and we write P = {x0, x1, x2, . . . , xn}.

If P = {x0, x1, x2, . . . , xn} is a partition of [a, b] we denote ∆xi = xi − xi−1 for 1 ≤ i ≤ n.
Throughout this and the next two lectures, we assume that f is a bounded function on [a, b]. For
the given partition P of [a, b], we define

Mi = sup{f(x) : xi−1 ≤ x ≤ xi}, mi = inf{f(x) : xi−1 ≤ x ≤ xi}.

U(P, f) =
n∑

i=1

Mi∆xi and L(P, f) =
n∑

i=1

mi∆xi.

The numbers U(P, f) and L(P, f) are called the upper and lower Riemann sums for the partition
P (see Figure 2).

Consider two partitions P1 and P2 of [a, b] such that P1 ⊂ P2, i.e., the points which are in
P1 are also in P2 and P2 has some extra points. Intuitively, it is clear that L(P1, f) ≤ L(P2, f)
and U(P2, f) ≤ U(P1, f). Moreover, intuitively, we feel that if we add more and more points to a
partition then the upper sums get smaller and the lower sums get larger. Let us formally prove the
above statements, which we guessed intuitively.

Definition 16.1. A partition P2 of [a, b] is said to be finer than a partition P1 if P2 ⊃ P1. In this
case we say that P2 is a refinement of P1.

Theorem 16.1. Let P2 be a refinement of P1 then L(P1, f) ≤ L(P2, f) and U(P2, f) ≤ U(P1, f).

Proof (*). We first assume that P2 contains just one more point than P1. Let this extra point be
x?. Suppose xi−1 < x? < xi, where xi−1 and xi are consecutive points of P1. Let

w1 = inf{f(x) : xi−1 ≤ x ≤ x?} and w2 = inf{f(x) : x? ≤ x ≤ xi}.

Then w1 ≥ mi and w2 ≥ mi where mi = inf{f(x) : xi−1 ≤ x ≤ xi}. Then

L(P2, f)− L(P1, f) = w1(x
? − xi−1) + w2(xi − x?)−mi(xi − xi−1)

= (w1 −mi)(x
? − xi−1) + (w2 −mi)(xi − x?)

≥ 0

If P2 contains k more points then we repeat this process k−times. The other inequality is analo-
gously proved. �

Our aim is to make the upper sums as large as possible and the lower sums as small as possible
by considering different partitions so that the ”area” of the region under the graph which is to
be defined is squeezed between the lower sums and the upper sums. One may think that we can
start with a partition and then go on taking its refinements so that this aim can be achieved. But
which partition to start with and which way to refine it are the natural questions. So, why not
considering all the possible partitions to achieve our goal. In light of this, we define

∫ b

a
f(x)dx = inf{U(P, f) : P is a partition of [a, b]}
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and ∫ b

a
f(x)dx = sup{L(P, f) : P is a partition of [a, b]}.

Note that, since f is bounded, there exist real numbers m and M such that m ≤ f(x) ≤ M , for all
x ∈ [a, b]. Thus for every partition P of [a, b],

m(b− a) ≤ L(P, f) ≤ U(P, f) ≤ M(b− a).

Hence the sets {U(P, f) : P is a partition of [a, b]} and {L(P, f) : P is a partition of [a, b]} are

bounded. Therefore,
∫ b
a fdx and

∫ b
a f(x)dx exist and are called the upper and lower Riemann

integrals of f over [a, b] respectively.

Definition 16.2. (i) A bounded function f : [a, b] → R is said to be Riemann integrable or

integrable (on [a, b]) if
∫ b
a f(x)dx =

∫ b
a f(x)dx.

(ii) If f is integrable on [a, b], then the common value
∫ b
a f(x)dx (=

∫ b
a f(x)dx) is called the Riemann

integral of f and it is denoted by
∫ b
a f(x)dx.

Examples 16.1. 1. Consider the function f : [0, 1] → R defined by

f(
1

2
) = 1 and f(x) = 0 for all x ∈ [0, 1]\{1

2
}.

Then f is integrable. We show this using the definition as follows. For any partition P of [0, 1],
L(P, f) is always 0 and hence the lower integral is 0. Let us evaluate the upper integral. Let
P = {x0, x1, x2, .., xn} be any partition of [0, 1] and 1

2 ∈ [xi−1, xi] for some i. If 1
2 ∈ (xi−1, xi) then

U(P, f) = Mi4xi = 4xi ≤ max{∆xj : 1 ≤ j ≤ n} ≤ 2max{∆xj : 1 ≤ j ≤ n}.

If 1
2 = xi−1, then

U(P, f) = Mi−14xi−1 +Mi4xi = 4xi−1 +4xi ≤ 2max{∆xj : 1 ≤ j ≤ n}.

Similarly, if 1
2 = xi, then we can show that U(P, f) ≤ 2max{∆xj : 1 ≤ j ≤ n}. Since we can always

choose a partition P such that max{∆xj : 1 ≤ j ≤ n} is as small as possible, the upper integral,

which is the infimum of U(P, f)′s, is 0. Hence, f is integrable and
∫ 1
0 f(x)dx = 0.

2. Not every bounded function is integrable. For example, consider the function f defined by

f(x) =

{
1 if x is rational
0 if x is irrational.

Consider an interval [a, b]. For any partition P of [a, b], U(P, f) = b−a and L(P, f) = 0. Hence the
upper integral of f is 1 and the lower integral is 0. Therefore f is not integrable over any interval
[a, b].

In general, determining whether a bounded function on [a, b] is integrable, using the definition,
is difficult. For the purpose of checking the integrability, we give a criterion for integrability, called
Riemann criterion, which is analogous to the Cauchy criterion for the convergence of a sequence.

Let us define some concepts and results before presenting the criterion.

Definition 16.3. Given two partition P1 and P2, the partition P1∪P2 = P is called their common
refinement.
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The geometric interpretation suggests that the lower integral is less than or equal to the upper
integral. So the next result is also anticipated.

Theorem 16.2. Let f : [a, b] → R be a bounded function. Then
∫ b
a f(x)dx ≥

∫ b
a f(x)dx.

Proof (*). Let P1, P2 be two partitions of [a, b] and let P be their common refinement. Then by
Theorem 16.1,

L(P1, f) ≤ L(P, f) ≤ U(P, f) ≤ U(P2, f).

Thus for any two partitions P1 and P2, we have L(P1, f) ≤ U(P2, f). Fix P2 and take supremum

over all P1. Then
∫ b
a f(x)dx ≤ U(P2, f). Now take infimum over all P2 to get the desired result. �

In the following result we present the Reimann criterion (a necessary and sufficient condition
for the existence of the integral of a bounded function).

Theorem 16.3. (Riemann’s criterion for integrability). Let f : [a, b] → R be a bounded
function. Then f is integrable if and only if for every ε > 0 there exists a partition P such that

U(P, f)− L(P, f) < ε. (1)

Proof (*). Suppose that condition (1) holds. Let ε > 0 and P satisfy (1). Then

L(P, f) ≤
∫ b

a
f(x)dx ≤

∫ b

a
f(x)dx ≤ U(P, f).

Therefore, (1) implies that
∫ b
a f(x)dx−

∫ b
a f(x)dx < ε. Since ε is arbitrary,

∫ b
a f(x)dx =

∫ b
a f(x)dx.

Ths shows that f is integrable.

Conversely, suppose f is integrable and ε > 0. Then there exist partitions P1 and P2 such that

L(P1, f) >

∫ b

a
f(x)dx− ε/2 and U(P2, f) <

∫ b

a
f(x)dx+ ε/2.

Let P be the common refinement of P1 and P2. Then

∫ b

a
f(x)dx− ε

2
< L(P1, f) ≤ L(P, f) ≤ U(P, f) ≤ U(P2, f) <

∫ b

a
f(x)dx+

ε

2
.

Therefore U(P, f)− L(P, f) < ε. �


