## Lecture 17: Riemann Integration (Part II)

In this lecture we will present some applications of Riemann criterion. We first present an example.

Example 17.1.(*) Let $f:[0,1] \rightarrow \mathbb{R}$ be such that

$$
f(x)=\left\{\begin{array}{cc}
1 & \text { if } x=\frac{1}{n} \text { and } n>1 \\
0 & \text { otherwise }
\end{array}\right.
$$

We will show that $f$ is integrable and $\int_{0}^{1} f(x) d x=0$. We will use the Riemann criterion to show that $f$ is integrable on $[0,1]$.

Let $\varepsilon>0$ be given. We will choose a partition $P$ such that $U(P, f)-L(P, f)<\varepsilon$. Since $1 / n \rightarrow 0$, there exists $N \in \mathbb{N}$ such that $1 / n \in\left[0, \frac{\epsilon}{2}\right]$ for all $n>N$ and $\left\{\frac{1}{N}, \frac{1}{N-1}, \ldots, \frac{1}{3}, \frac{1}{2}\right\} \subset\left(\frac{\epsilon}{2}, 1\right)$. Find $x_{N}, y_{N}, x_{N-1}, y_{N-1}, \ldots, x_{3}, y_{3}, x_{2}, y_{2}$ such that $x_{N}<y_{N}<x_{N-1}<y_{N-1}<\ldots<x_{3}<y_{3}<x_{2}<y_{2}$ and

$$
\frac{1}{N} \in\left(x_{N}, y_{N}\right), \frac{1}{N-1} \in\left(x_{N-1}, y_{N-1}\right), \ldots, \frac{1}{2} \in\left(x_{2}, y_{2}\right)
$$

and

$$
\left|x_{N}-y_{N}\right|+\left|x_{N-1}-y_{N-1}\right|+\ldots+\left|x_{2}-y_{2}\right|<\frac{\epsilon}{2}
$$

Consider the partition $P=\left\{0, \frac{\epsilon}{2}, x_{N}, y_{N}, x_{N-1}, y_{N-1}, \ldots, x_{3}, y_{3}, x_{2}, y_{2}, 1\right\}$. Observe that

$$
U(P, f)=1 \cdot \frac{\epsilon}{2}+1 \cdot\left|x_{N}-y_{N}\right|+1 \cdot\left|x_{N-1}-y_{N-1}\right|+\ldots+1 \cdot\left|x_{2}-y_{2}\right|<\epsilon
$$

and $L(P, f)=0$. Hence $U(P, f)-L(P, f)<\epsilon$. Therefore by the Reimann criterion $f$ is integrable. Since the lower integral is 0 and the function is integrable, $\int_{0}^{1} f(x) d x=0$.

The following result which is a sequential version of the Riemann criterion is an immediate consequence of the Riemann criterion.

Theorem 17.1 (Riemann Criterion). Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded. Then $f$ is integrable if and only if there exists a sequence $\left(P_{n}\right)$ of partitions of $[a, b]$ such that $U\left(P_{n}, f\right)-L\left(P_{n}, f\right) \rightarrow 0$.

Example 17.2. Let $f(x)=x^{m}$ for $x \in[a, b], a \geq 0$ and $m \in \mathbb{N}$. We will use Theorem 17.1 and show that $f$ is integrable. We will also use the argument involved in this example in the proof of Theorem 17.3. For $n \in \mathbb{N}$, choose a partition $P_{n}=\left\{a=x_{0}, x_{1}, x_{2}, \ldots, x_{n}=b\right\}$ such that $\Delta x_{i}=\frac{b-a}{n}$ for all $i=1,2, \ldots, n$. Observe that $M_{i}=x_{i}^{m}$ and $m_{i}=x_{i-1}^{m}$ for all $i=1,2, \ldots, n$. Hence

$$
U\left(P_{n}, f\right)-L\left(P_{n}, f\right)=\sum_{n=1}^{n}\left(x_{i}^{m}-x_{i-1}^{m}\right) \frac{b-a}{n}=\frac{b-a}{n}\left(b^{m}-a^{m}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

Therefore by Theorem 17.1, $f$ is integrable.
We will apply the Riemann criterion to prove the following two existence theorems.
We need the following lemma.
Lemma 17.1. Let $a<b$ and $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Then for every $\epsilon>0$ there exists $\delta>0$ such that

$$
\begin{equation*}
x, y \in[a, b] \text { and }|x-y|<\delta \Rightarrow|f(x)-f(y)|<\epsilon \tag{1}
\end{equation*}
$$

Please write to psraj@iitk.ac.in if any typos/mistakes are found in these notes.

Proof. ${ }^{*}$ ) Suppose that condition (1) does not hold. Then there exist an $\epsilon_{0}>0$ and two sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in $[a, b]$ such that $x_{n}-y_{n} \rightarrow 0$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \varepsilon_{0}$ for all $n \in N$. Since $\left(x_{n}\right)$ is in $[a, b]$, by Theorem 4.1, there exists a subsequence $\left(x_{n i}\right)$ of $\left(x_{n}\right)$ such that $x_{n i} \rightarrow x_{0} \in[a, b]$. Hence $y_{n i} \rightarrow x_{0}$. By continuity of $f$ at $x_{0}$, it follows that $f\left(x_{n i}\right) \rightarrow f\left(x_{0}\right)$ and $f\left(y_{n i}\right) \rightarrow f\left(x_{0}\right)$. Therefore $\left|f\left(x_{n i}\right)-f\left(y_{n i}\right)\right| \rightarrow 0$. This contradicts the fact that $\left|f\left(x_{n i}\right)-f\left(y_{n i}\right)\right| \geq \varepsilon_{0}$ for all $n_{i}$. Hence condition (1) holds.

Theorem 17.2. If $f$ is continuous on $[a, b]$ then $f$ is integrable.
Proof. (*) Let $\epsilon>0$. Using Lemma 17.1, choose $\delta>0$ such that $|f(x)-f(y)| \leq \epsilon$ whenever $x, y \in[a, b]$ and $|x-y|<\delta$.

Let $P=\left\{a=x_{0}, x_{1}, x_{2}, . ., x_{n}=b\right\}$ be a partition of $[a, b]$ such that $\Delta x_{i}<\delta$ for all $i=1,2, \ldots, n$. Then, by Theorem 5.3, there exists $x_{i}^{*}, y_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$ such that $f\left(x_{i}^{*}\right)=M_{i}$ and $f\left(y_{i}^{*}\right)=m_{i}$ for all $i=1,2, . ., n$. Therefore, $M_{i}-m_{i} \leq \epsilon$ for all $i=1,2, \ldots, n$. Hence

$$
U(P, f)-L(P, f)=\sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \Delta x_{i} \leq \epsilon(b-a) .
$$

This implies that $f$ is integrable.
Theorem 17.3. If $f$ is a monotone function on $[a, b]$ then $f$ integrable.
Proof. Suppose $f$ is monotonically increasing. For every $n \in \mathbb{N}$, choose a partition $P_{n}=\{a=$ $\left.x_{0}, x_{1}, x_{2}, . ., x_{n}=b\right\}$ such that $\Delta x_{i}=\frac{b-a}{n}$ for all $i=1,2, \ldots, n$. Then $M_{i}=f\left(x_{i}\right)$ and $m_{i}=f\left(x_{i-1}\right)$ for all $i=1,2, \ldots, n$.. Therefore

$$
\begin{aligned}
U\left(P_{n}, f\right)-L\left(P_{n}, f\right) & =\frac{b-a}{n} \sum_{i=1}^{n}\left[f\left(x_{i}\right)-f\left(x_{i-1}\right)\right] \\
& =\frac{b-a}{n}[f(b)-f(a)]
\end{aligned}
$$

This shows that $U\left(P_{n}, f\right)-L\left(P_{n}, f\right) \rightarrow 0$ and hence by Theorem 17.1, $f$ is integrable. The proof is similar in case $f$ is decreasing.

We need some properties of the integrals.

## Properties of the integrals

Theorem 17.4. Let $f$ and $g$ be integrable on $[a, b]$.

1. If $c \in(a, b)$, then $f$ is integrable on $[a, c]$ and $[c, d]$. Moreover, $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+$ $\int_{c}^{d} f(x) d x$.
2. The function $f+g$ is integrable on $[a, b]$ and $\int_{a}^{b}(f+g)(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$.
3. For $\alpha \in \mathbb{R}$, the function $\alpha f$ is integrable and $\int_{a}^{b}(\alpha f)(x) d x=\alpha \int_{a}^{b} f(x) d x$.
4. If $f(x) \leq g(x)$ for all $x \in[a, b]$, then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$.
5. The function $|f|$, defined by $|f|(x)=|f(x)|$, is integrable and $\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f|(x) d x$.

We will not present the proof of Theorem 17.4 but we will use it.

We need the following natural convention.
Definition 17.1 Let $f$ be integrable on $[a, b]$. Define

$$
\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x \quad \text { and } \quad \int_{c}^{c} f(x) d x=0
$$

for any $c \in \mathbb{R}$.

