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Lecture 17: Riemann Integration (Part II)

In this lecture we will present some applications of Riemann criterion. We first present an
example.

Example 17.1.(*) Let f : [0, 1] → R be such that

f(x) =

{
1 if x = 1

n and n > 1
0 otherwise.

We will show that f is integrable and
∫ 1
0 f(x)dx = 0. We will use the Riemann criterion to show

that f is integrable on [0, 1].

Let ε > 0 be given. We will choose a partition P such that U(P, f)−L(P, f) < ε. Since 1/n → 0,
there exists N ∈ N such that 1/n ∈ [0, ε

2 ] for all n > N and { 1
N , 1

N−1 , ...,
1
3 ,

1
2} ⊂ ( ε2 , 1). Find

xN , yN , xN−1, yN−1, ..., x3, y3, x2, y2 such that xN < yN < xN−1 < yN−1 < ... < x3 < y3 < x2 < y2
and

1

N
∈ (xN , yN ),

1

N − 1
∈ (xN−1, yN−1), ...,

1

2
∈ (x2, y2)

and
|xN − yN |+ |xN−1 − yN−1|+ ...+ |x2 − y2| <

ε

2
.

Consider the partition P = {0, ε
2 , xN , yN , xN−1, yN−1, ..., x3, y3, x2, y2, 1}. Observe that

U(P, f) = 1 · ε
2
+ 1 · |xN − yN |+ 1 · |xN−1 − yN−1|+ ...+ 1 · |x2 − y2| < ε

and L(P, f) = 0. Hence U(P, f)−L(P, f) < ε. Therefore by the Reimann criterion f is integrable.
Since the lower integral is 0 and the function is integrable,

∫ 1
0 f(x)dx = 0.

The following result which is a sequential version of the Riemann criterion is an immediate
consequence of the Riemann criterion.

Theorem 17.1 (Riemann Criterion). Let f : [a, b] → R be bounded. Then f is integrable if
and only if there exists a sequence (Pn) of partitions of [a, b] such that U(Pn, f)− L(Pn, f) → 0.

Example 17.2. Let f(x) = xm for x ∈ [a, b], a ≥ 0 and m ∈ N. We will use Theorem 17.1 and
show that f is integrable. We will also use the argument involved in this example in the proof of
Theorem 17.3. For n ∈ N, choose a partition Pn = {a = x0, x1, x2, ..., xn = b} such that ∆xi =

b−a
n

for all i = 1, 2, ..., n. Observe that Mi = xmi and mi = xmi−1 for all i = 1, 2, ..., n. Hence

U(Pn, f)− L(Pn, f) =
n∑

n=1

(xmi − xmi−1)
b− a

n
=

b− a

n
(bm − am) → 0 as n → ∞

Therefore by Theorem 17.1, f is integrable.

We will apply the Riemann criterion to prove the following two existence theorems.

We need the following lemma.

Lemma 17.1. Let a < b and f : [a, b] → R be continuous. Then for every ε > 0 there exists δ > 0
such that

x, y ∈ [a, b] and |x− y| < δ ⇒ |f(x)− f(y)| < ε. (1)
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Proof.(*) Suppose that condition (1) does not hold. Then there exist an ε0 > 0 and two sequences
(xn) and (yn) in [a, b] such that xn − yn → 0 and | f(xn) − f(yn) |≥ ε0 for all n ∈ N . Since (xn)
is in [a, b], by Theorem 4.1, there exists a subsequence (xni) of (xn) such that xni → x0 ∈ [a, b].
Hence yni → x0. By continuity of f at x0, it follows that f(xni) → f(x0) and f(yni) → f(x0).
Therefore | f(xni) − f(yni) |→ 0. This contradicts the fact that | f(xni) − f(yni) |≥ ε0 for all ni.
Hence condition (1) holds. �

Theorem 17.2. If f is continuous on [a, b] then f is integrable.

Proof. (*) Let ε > 0. Using Lemma 17.1, choose δ > 0 such that |f(x) − f(y)| ≤ ε whenever
x, y ∈ [a, b] and |x− y| < δ.

Let P = {a = x0, x1, x2, .., xn = b} be a partition of [a, b] such that ∆xi < δ for all i = 1, 2, . . . , n.
Then, by Theorem 5.3, there exists x∗i , y

∗
i ∈ [xi−1, xi] such that f(x∗i ) = Mi and f(y∗i ) = mi for all

i = 1, 2, .., n. Therefore, Mi −mi ≤ ε for all i = 1, 2, ..., n. Hence

U(P, f)− L(P, f) =

n∑
i=1

(Mi −mi)∆xi ≤ ε(b− a).

This implies that f is integrable. �

Theorem 17.3. If f is a monotone function on [a, b] then f integrable.

Proof. Suppose f is monotonically increasing. For every n ∈ N, choose a partition Pn = {a =
x0, x1, x2, .., xn = b} such that ∆xi =

b−a
n for all i = 1, 2, ..., n. Then Mi = f(xi) and mi = f(xi−1)

for all i = 1, 2, ..., n.. Therefore

U(Pn, f)− L(Pn, f) =
b− a

n

n∑
i=1

[f(xi)− f(xi−1)]

=
b− a

n
[f(b)− f(a)]

This shows that U(Pn, f) − L(Pn, f) → 0 and hence by Theorem 17.1, f is integrable. The proof
is similar in case f is decreasing. �

We need some properties of the integrals.

Properties of the integrals

Theorem 17.4. Let f and g be integrable on [a, b].

1. If c ∈ (a, b), then f is integrable on [a, c] and [c, d]. Moreover,
∫ b
a f(x)dx =

∫ c
a f(x)dx +∫ d

c f(x)dx.

2. The function f + g is integrable on [a, b] and
∫ b
a (f + g)(x)dx =

∫ b
a f(x)dx+

∫ b
a g(x)dx.

3. For α ∈ R, the function αf is integrable and
∫ b
a (αf)(x)dx = α

∫ b
a f(x)dx.

4. If f(x) ≤ g(x) for all x ∈ [a, b], then
∫ b
a f(x)dx ≤

∫ b
a g(x)dx.

5. The function |f |, defined by |f |(x) = |f(x)|, is integrable and |
∫ b
a f(x)dx| ≤

∫ b
a |f |(x)dx.

We will not present the proof of Theorem 17.4 but we will use it.
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We need the following natural convention.

Definition 17.1 Let f be integrable on [a, b]. Define∫ a

b
f(x)dx = −

∫ b

a
f(x)dx and

∫ c

c
f(x)dx = 0

for any c ∈ R.


