
1

Lecture 5: Continuity, Existence of maximum and minimum points

We first define discontinuity of a function at a point. Let f : R → R. Note that the graph of f is
defined as the subset {(x, f(x)) : x ∈ R} of the plane R2. Let x0 ∈ R. Intuitively, we think that if
f is discontinuous at x0, then the graph of f is broken at the point (x0, f(x0)). For understanding,
let us assume that the graph of f is broken as shown in the following figure:

Figure 1: Discontinuous Graph

Observe in the figure that we can choose some ε0−neighbourhood (f(x0)− ε0, f(x0) + ε0) of f(x0),
such that if we consider any δ−neighbourhood (x0 − δ, x0 + δ) of x0, then we can find at least
one element x in (x0 − δ, x0 + δ) such that f(x) 6∈ (f(x0)− ε0, f(x0) + ε0).

We use the above observation for defining the discontinuity of a function at a point.

Definition 5.1. A function f : R → R is said to be discontinuous at a point x0 ∈ R if there exists
ε0 > 0 such that for every δ > 0 there exists x ∈ (x0− δ, x0+ δ) but f(x) 6∈ (f(x0)− ε0, f(x0)+ ε0).

Let us see some examples to understand the “ε-δ language” used in Definition 5.1.

Example 5.1. 1. Let f : R → R be given by f(x) = x2 if x ≤ 2 and f(x) = 9
2 if x > 2. Let x0 = 2.

We can guess that f is discontinuous at x0. We show it using Definition 5.1. By observing the gap
in the range of f , choose, for instance, ε0 =

1
4 . Let δ > 0 be given. Then define x = x0+

δ
2 = 2+ δ

2 .
Note that x ∈ (x0 − δ, x0 + δ) but f(x) = 9

2 6∈ (f(x0)− ε0, f(x0) + ε0) = (4− 1
4 , 4 +

1
4). Hence f is

discontinuous at x0.

2. Let f : R → R be defined by f(x) = 0 if x is rational and f(x) = 1 if x is irrational. Here we
guess that f is discontinuous at every element of R. We prove it using Definition 5.1. Let x0 ∈ R
and assume that x0 is rational. Then choose ε0 =

1
2 . Let δ > 0 be given. Then using Corollary 1.1,

find some irrational x ∈ (x0 − δ, x0 + δ). Then f(x) = 1 6∈ (f(x0)− ε0, f(x0) + ε0) = (−1
2 ,

1
2). If x0

is irrational then we proceed with the same argument and in this case we choose x to be rational.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in these notes.
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We now use the contrapositive of the statement of Definition 5.1, for giving a formal definition
of continuity of a function at a point.

Definition 5.2. A function f : R → R is said to be continuous at a point x0 ∈ R if for every
ε > 0, there exists δ > 0 such that f(x) ∈ (f(x0)− ε, f(x0) + ε) whenever x ∈ (x0 − δ, x0 + δ).

Note that in Definition 1.2, the condition “f(x) ∈ (f(x0) − ε, f(x0) + ε) whenever x ∈ (x0 −
δ, x0 + δ)” can be replaced by “|f(x)− f(x0)| < ε whenever |x− x0| < δ”. Observe that the value
of δ depends on the choice of ε. In general, the smaller the value of ε, the smaller δ must be. This
fact is illustrated in the following example.

Example 5.2. Let f : R → R be given by f(x) = 2x sin( 1x) when x 6= 0 and f(0) = 0. We show
that f is continuous at 0 using Definition 5.2. Remember that for given ε > 0, we have to find
δ > 0 (not the other way!). Note that here x0 = 0 and

| f(x)− f(x0) | = | 2x sin( 1
x
)− 0 | ≤ | 2x | = 2 | x− x0 | .

Let ε be given. Choose any δ > 0 such that δ ≤ ε
2 . Then we have

| f(x)− f(x0)| < ε whenever | x− x0 |< δ.

This shows that f is continuous at x0 = 0.

We now characterize the continuity of a function at a point in terms of convergent sequences.
This will help in two ways. The characterization can be used to verify the continuity instead of
using the definition. Next, since the sequences are involved in the characterization, we can make
use of the results proved in the previous lectures to derive certain properties of continuity.

Theorem 5.1. Let f : R → R and x0 ∈ R. Then f is continuous at x0 ∈ R if and only if (f(xn))
converges to f(x0) whenever (xn) converges to x0.

Proof.(*) Suppose f is continuous at x0 and xn → x0. Let us show that f(xn) → f(x0). Let ε > 0
be given. We must find N such that |f(xn)− f(x0)| < ε for all n ≥ N . Since f is continuous at x0,
there exists δ > 0 such that |f(x)− f(x0)| < ε whenever |x− x0| < δ. Since xn → x0, there exists
N ∈ N such that |xn − x0| < δ for all n ≥ N . This N serves our purpose.

To prove the converse, let us assume that f(xn) → f(x0) whenever xn → x0. Suppose on the
contrary, f is not continuous at x0. Then by Definition 5.1, there exists ε0 > 0 such that for each
n, there is an element xn ∈ (x0− 1

n , x0+
1
n) but |f(xn)−f(x0)| ≥ ε0. This implies that xn → x0 by

the sandwich theorem but (f(xn)) does not converge to f(x0) which contradicts our assumption.
�

We now see some examples in which we use Theorem 5.1 and verify the continuity.

Example 5.3. 1. Consider the function f which is defined in Example 5.2 and let x0 = 0. We
have already shown using Definition 5.2, that f is continuous at x0. Let us use Theorem 5.1 to
verify the same. It is already noted in Example 5.2 that 0 ≤ |f(x)− f(x0)| ≤ 2|x−x0|. If xn → x0,
then by sandwich theorem f(xn) → f(x0). Hence f is continuous at x0.

2. Let f(x) = sin(1/x) for all x 6= 0 and f(0) = 0. We show that f is not continuous at 0. To
show the discontinuity at 0, we produce one sequence (xn) such that xn → 0 but f(xn) 9 f(0),
i.e, (f(xn)) does not converge to f(0). Let xn = 2/{π(2n+ 1)} for n = 1, 2, . . .. Then xn → 0 and
f(xn) = (−1)n for every n ∈ N. Note that f(xn) 9 f(0). Hence f is not continuous at 0.



3

3. Let f(x) = 0 when x is rational and f(x) = x when x is irrational. We will see that this function
is continuous only at 0. Let (xn) be any sequence such that xn → 0. Since | f(xn) | ≤ | xn | for
all n ∈ N, f(xn) → 0 = f(0). Therefore by Theorem 5.1, f is continuous at 0. Suppose x0 6= 0
and it is rational. We show that f is not continuous at x0. Choose one sequence (xn) such
that xn is an irrational number for every n and xn → x0 (see Problem 8 in PP2). Observe that
f(xn) = xn → x0 6= f(x0). This shows that f is not continuous at x0. When x0 is irrational, the
proof is similar.

Remark 5.1. In order to show that a function f is not continuous at a point x0 it is sufficient to
produce one sequence (xn) such that xn → x0 but f(xn) 9 f(x0). However, to show a function is
continuous at x0, we have to show that f(xn) → f(x0) whenever xn → x0 i.e, for every (xn) such
that xn → x0.

It follows from Theorem 5.1 and Theorem 2.1 that if fand g are continuous at some x0 ∈ R
then (f + g) and (fg) are continuous at x0.

Continuous function on a subset of R

Let S be a subset of R and x0 ∈ S. Suppose f : S → R. We say that f is continuous at x0, if
for every ε > 0, there exists δ > 0 such that |f(x)−f(x0)| < ε whenever x ∈ S and |x−x0| < δ. By
repeating the proof of Theorem 5.1, we see that f is continuous at x0 if and only if f(xn) → f(x0)
whenever xn → x0 and xn ∈ S for all n ∈ N. If f is continuous at every x ∈ S, then we say that f
is continuous on S.

Example 5.4. Let f : (0,∞) → R be defined by f(x) = 1
x for all x ∈ (0,∞). Then f is continuous

on (0,∞). To verify this, take some x0 ∈ (0,∞) and a sequence (xn) in (0,∞) such that xn → x0.
We know that 1

xn
→ 1

x0
. Hence f is continuous at x0. Since x0 is an arbitrary element in (0,∞), f

is continuous at every element of (0,∞) and therefore f is continuous on (0,∞).

Continuity properties (f ◦ g) and (fg ) are discussed in Problems 3 and 10 in PP5.

Continuous functions on closed bounded intervals

We will see that if a continuous function is defined on a closed bounded interval then it has
some interesting and important properties. Such properties will be applied later.

Definition 5.4. Let S ⊆ R and f : S → R. We say that f is bounded on S if the set {f(x) : x ∈ S}
is a bounded subset of R.

Theorem 5.2. Let f : [a, b] → R be continuous. Then f is bounded on [a, b].

Proof.(*) Suppose that f is not bounded on [a, b]. Then for each n ∈ N there is a point xn ∈ [a, b]
such that |f(xn)| > n. Since (xn) is a bounded sequence, by the Bolzano-Weierstrass theorem, it
has a convergent subsequence (xnk

). Suppose xnk
→ x0 for some x0. Since xnk

∈ [a, b] for every
k ∈ N, x0 ∈ [a, b]. By the continuity of f at x0, we have f(xnk

) → f(x0). Since |f(xn)| > n for all n,
f(xnk

) → ∞ as k → ∞. Hence there is a contradiction. Therefore f is bounded on [a, b]. �

For a, b ∈ R, we let [a, b) = {x ∈ R : a ≤ x < b} and (a, b] = {x ∈ R : a < x ≤ b}. We remark
that if a function is continuous on an open interval (a, b) or on a semi-open interval of the type
(a, b] or [a, b), then it is not necessary that the function has to be bounded. For example, consider
the continuous function f : (0, 1] → R defined by f(x) = 1

x for every x ∈ (0, 1].

Definition 5.5. Let S ⊆ R and f : S → R. An element x0 ∈ S is called a point of maximum for f
on S if f(x0) ≥ f(x) for all x ∈ S. Point of minimum for f on S is defined similarly.
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The following theorem which will be used later is a consequence of the Bolzano-Weierstrass
theorem and is also an important result in calculus.

Theorem 5.3. Let f : [a, b] → R be continuous. Then there exist x0, y0 ∈ [a, b] such that x0 is a
point of maximum for f on [a, b] and y0 is a point of minimum for f on [a, b].

Proof (*). By Theorem 5.2, f is bounded on [a, b]. Let M = sup{f(x) : x ∈ [a, b]}. Then
there exists a sequence (f(xn)) in {f(x) : x ∈ [a, b]} such that f(xn) → M (see Problem 9 of
PP2). Since (xn) is a sequence in [a, b], by the Bolzano Weierstrass theorem, it has a convergent
subsequence (xnk

). Suppose xnk
→ x0 for some x0. Then x0 ∈ [a, b]. By the continuity of f at

x0, f(xnk
) → f(x0). Since, we also have f(xnk

) → M , we get f(x0) = M . Hence x0 is a point of
maximum for f on [a, b]. The proof for the existence of a point of minimum is similar. �


