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Lecture 8: Cauchy Mean Value Theorem, L’Hospital’s Rule

In the previous lecture, we discussed how Rolle’s theorem and MVT can be used for obtaining
certain information about a given function by looking at its derivative. In this lecture, we will
discuss L’Hospital’s rule which is an useful method for determining limits of some specific types of
functions using their derivatives.

We first present a generalization of the MVT, called Cauchy mean value theorem (in short,
CMVT), which is needed to prove L’Hospital’s rule.

Cauchy mean value theorem

Theorem 8.1 (CMVT). Let f and g be continuous on [a, b] and differentiable on (a, b). Suppose
that g′(x) 6= 0 for all x ∈ (a, b). Then there exists c ∈ (a, b) such that

f(b)− f(a)

g(b)− g(a)
=

f ′(c)

g′(c)
.

Proof (*). Observe that since g′(x) 6= 0 for all x ∈ (a, b), by Rolle’s theorem g(b) 6= g(a). Consider
the function F : [a, b] → R defined by

F (x) = f(x)− f(a)− f(b)− f(a)

g(b)− g(a)
(g(x)− g(a)).

Note that F is continuous on [a, b], differentiable on (a, b) and F (a) = F (b) = 0. By Rolle’s theorem
there exists c ∈ (a, b) such that F ′(c) = 0. This proves the theorem. �

The Cauchy mean value theorem (CMVT) is sometimes called generalized mean value theorem.
Because, if we take g(x) = x in CMVT we obtain the MVT. We have seen that the MVT can be
used to obtain some inequalities. Since CMVT is a generalization of MVT, CMVT too can also be
used for obtaining certain inequalities.

Example 8.1. Using the CMVT, we show that 1− x2

2! < cosx for x 6= 0. Let f(x) = 1− cosx and

g(x) = x2

2 . By the CMVT there exists c betwen 0 and x such that 1−cos x
x2/2

= sin c
c < 1.

L’Hospital’s Rule

There are two forms of L’Hospital’s rule. One is called 0
0 form and the other ∞

∞ form.

0
0 form

This form deals with lim
x→x0

f(x)
g(x) , where lim

x→x0

f(x) = 0 = lim
x→x0

g(x) and x0 ∈ R or x0 is ±∞.

As in the previous lectures, I will denote an interval. Recall that an interval can be any one of
the following sets: R, [a, b], (a, b), (a, b], [a, b), (a,∞), (−∞, b), [a,∞), (−∞, b] where a < b.

Theorem 8.2 (L’Hospital’s Rule). Suppose x0 ∈ I or x0 is ±∞. Let

(i) f, g : I\{x0} → R be differentiable,

(ii) g′(x) 6= 0 and g(x) 6= 0 for all x ∈ I\{x0} and

(iii) lim
x→x0

f(x) = 0 = lim
x→x0

g(x)
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If lim
x→x0

f ′(x)
g′(x) = L for some L ∈ R or L is ±∞, then lim

x→x0

f ′(x)
g′(x) = lim

x→x0

f(x)
g(x) = L.

Proof (*). Case I: Suppose x0 ∈ I and lim
x→x0

f ′(x)
g′(x) = L where L ∈ R or L is ±∞.

We will show that lim
x→x0

f(x)
g(x) = L. Define f(x0) = g(x0) = 0 so that f and g are continuous on I.

Let (xn) be any sequence in I such that either xn > x0 for all n ∈ N or xn < x0 for all n ∈ N and
xn → x0. Then by the CMVT, for every n ∈ N, there exists cn between xn and x0 such that

f(xn)− f(x0)

g(xn)− g(x0)
=

f ′(cn)

g′(cn)
.

By the sandwich theorem, we get cn → x0. Since f(x0) = 0 = g(x0) and
f ′(cn)
g′(cn)

→ L, it follows that
f(xn)
g(xn)

→ L. Therefore lim
x→x0

f(x)
g(x) = L.

Case II: Suppose that x0 is ±∞ and lim
x→∞

f ′(x)
g′(x) = L where L ∈ R or L is ±∞.

Assume that x0 is ∞. We claim that lim
x→∞

f(x)
g(x) = L.

In this case, we can and we will assume that there exists some M > 0 such that [M,∞) ⊂ I. Define
F,G : (0, 1

M ] → R by F (x) = f( 1x) and G(x) = g( 1x). Then, for all x ∈ (0, 1
M ),

F ′(x)

G′(x)
=

f ′( 1x)(−
1
x2 )

g′( 1x)(−
1
x2 )

=
f ′( 1x)

g′( 1x)
.

Set F (0) = 0, G(0) = 0, I = [0, 1
M ] and x0 = 0. Apply Case I (for F and G instead of f and g) to

conclude that lim
x→∞

f(x)
g(x) = lim

y→0+

F (y)
G(y) = lim

y→0+

F ′(y)
G′(y) = lim

y→0+

f ′( 1
y
)

g′( 1
y
)
= lim

x→∞
f ′(x)
g′(x) = L.

The proof is similar in case x0 is −∞. �

Application 8.1. The derivative of a function has some interesting properties. For instance, the
derivative of a differentiable function defined on an interval has the intermediate value property
(see Problem 18 of PP7). We now derive another property of the derivative using L’Hospital’s rule.
Let f : I → R, x0 ∈ I and f be continuous at x0. Suppose that f is differentiable on I\{x0} and
lim
x→x0

f ′(x) exists. Then f ′(x0) exists and f ′(x0) = lim
x→x0

f ′(x). This property can be derived as

follows. Use Theorem 8.2 to obtain that

lim
x→x0

f(x)− f(x0)

x− x0
= lim

x→x0

f ′(x)

1
= lim

x→x0

f ′(x).

This shows that f ′(x0) exists and f ′(x0) = lim
x→x0

f ′(x). The above property can also be derived

from the MVT (see Problem 6 in PP8).

Example 8.2. 1. Consider the problem of finding lim
x→1

x−1
log x . If we take f(x) = x − 1, g(x) =

log x, x0 = 1 and I = (0,∞), then by Theorem 8.2, lim
x→1

x−1
log x = 1.

2. Let us compute lim
x→0

sin x−x
2x3 . Apply Theorem 8.2 thrice to find the limit as follows

lim
x→0

sinx− x

2x3
= lim

x→0

cosx− 1

6x2
= lim

x→0

− sinx

12x
= lim

x→0

− cosx

12
= − 1

12
.
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Similar computation shows that lim
x→0

sin x−x
x4 = ∞.

3. Let us find lim
x→∞

log(1+ 1
x
)

1/x . Applying Theorem 8.2, we obtain that

lim
x→∞

log(1 + 1
x)

1/x
= lim

x→∞

(1 + 1
x)

−1(−x−2)

−x−2
= lim

x→∞

1

1 + 1/x
= 1.

3. The assumption that lim
x→x0

f(x) = 0 = lim
x→x0

g(x) is essential in Theorem 8.2. For example, if

f(x) = 2x+ 1 and g(x) = 3x+ 5 for all x ∈ R, then limx→0
f(x)
g(x) = 1

5 but limx→0
f ′(x)
g′(x) = 2

3 .

∞
∞ form

This form deals with lim
x→x0

f(x)
g(x) , where lim

x→x0

f(x) = ∞ = lim
x→x0

g(x) and x0 ∈ R or x0 is ±∞.

Theorem 8.3 (L’Hospital’s Rule). Suppose x0 ∈ I or x0 is ±∞. Let

(i) f, g : I\{x0} → R be differentiable,

(ii) g′(x) 6= 0 and g(x) 6= 0 for all x ∈ I\{x0} and

(iii) lim
x→x0

f(x) = ∞ = lim
x→x0

g(x)

If lim
x→x0

f ′(x)
g′(x) = L for some L ∈ R or L is ±∞, then lim

x→x0

f ′(x)
g′(x) = lim

x→x0

f(x)
g(x) = L.

We will not present the proof of Theorem 8.3 but we will use it.

Application 8.2. Let f : I → R be a continuous function at x0 ∈ I. If we want to verify whether
f is differentiable at x0, we need to verify the existence of lim

x→x0

f(x)−f(x0)
x−x0

which is of the form 0
0 or

lim
x→x0

1/(x−x0)
1/(f(x)−f(x0))

which is of the form ∞
∞ . Therefore, L’Hospital rule can be used for verifying the

differentiability and finding the derivative of a function at a point. For instance, let f(x) = e−1/x2

if x 6= 0 and f(0) = 0. We will use this function later in one of the lectures. We will now show that
f is differentiable at 0 and f ′(0) = 0 using L’Hospital’s rule. To show this, we have to evaluate

lim
x→0+

e−1/x2−0
x−0 which is of 0

0 form. Applying Theorem 8.2 will lead to a problem of finding a limit

which is again of 0
0 form. Therefore we convert the problem into ∞

∞ form and apply Theorem 8.3.

Observe that lim
x→0+

e−1/x2

x = lim
y→∞

ye−y2 = lim
y→∞

y

ey
2 . Therefore, by Theorem 8.3, lim

y→∞
y

ey
2 = 0 and

hence f ′(0) = 0.

Example 8.3. 1. Let us compute lim
x→∞

xp

qx where p > 0 and q > 1. If p < 1, then applying Theorem

8.3, we obtain

lim
x→∞

xp

qx
= lim

x→∞

pxp−1

qx log q
= 0.

If p > 1, then we apply Theorem 8.3 more than once to get lim
x→∞

xp

qx = 0. This implies that

lim
n→∞

np

qn = 0 which was already discussed in Example 2.4. Similar to what was said in Example 2.4,

we say that the function qx goes to infinity “faster” than xp as x → ∞.

2. Consider the problem of finding lim
x→∞

log x
xp for some p > 0. It follows from Theorem 8.3 that

lim
x→∞

log x
xp = 0. This reveals that the function xp goes to infinity “faster” than log x as x → ∞.
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3. Using Theorem 8.3, verify that, for any p > 0, ex goes to infinity “faster” than xp as x → ∞.

4. It is easy to very directly that limx→∞
x−sinx
2x+sinx = 1

2 . However, one cannot apply L’Hospital’s

Rule to find the limit, because limx→∞
1−cosx
2+cosx does not exist.

Other forms

The forms such as 0 ·∞ and ∞−∞ can be reduced to 0
0 form by algebraic manipulations. Such

manipulations are illustrated in the following examples.

Example 8.4. 1. Let I = (0, π2 ) and consider lim
x→π

2
−
(tanx − secx) which is of the form ∞−∞.

Since tanx− secx = sin x−1
cos x , by Theorem 8.2, lim

x→π/2−
(tanx− secx) = 0.

2. Let I = (0,∞) and consider lim
x→0+

(x log x) which is of the form 0 · (−∞). Since x log x = log x
x−1 ,

by Theorem 8.2, lim
x→0+

(x log x) = lim
x→0+

1/x
−x−2 = 0.

The forms such as 1∞, 00,∞0 can be reduced to 0 · ∞ by involving the logarithmic function.
This is illustrated in the following examples.

Example 8.5. 1. Consider lim
x→0+

xx which is of the form 00. Observe that log(xx) = x log x. By

Example 8.4, lim
x→0+

(x log x) = 0. Since xx = ex log x, by the continuity of the exponential function,

lim
x→0+

xx = lim
x→0+

ex log x = e0 = 1.

2. Consider lim
x→∞

(1 + 1
x)

x which is of the form 1∞. Here we can take I = (1,∞). Note that

log(1 + 1
x)

x = x log(1 + 1
x). By Example 8.2, lim

x→∞
x log(1 + 1

x) = 1. Since (1 + 1
x)

x = ex log(1+ 1
x
),

lim
x→∞

(1 + 1
x)

x = lim
x→∞

ex log(1+ 1
x
) = e. In fact, lim

x→∞
(1 + a

x)
x = ea for all a ∈ R.

3. Consider lim
x→∞

x
1
x which is of the form∞0. Since log(x

1
x ) = log x

x , by Example 8.3, lim
x→∞

log(x
1
x ) =

0. Therefore, lim
x→∞

x
1
x = lim

x→∞
elog(x

1
x ) = e0 = 1.

Remark 8.1. 1. L’Hospital’s Rule cannot be applied if the form is neither 0
0 nor ∞

∞ . For instance,
consider lim

x→0

x+1
x . It is easy to see that lim

x→0+
x+1
x = ∞. If we take f(x) = 1 + x and g(x) = x then

lim
x→0

f ′(x)
g′(x) = 1.

2. In some cases, L’Hospital’s Rule may not lead to the desired limit. Consider lim
x→∞

√
1+x2

x . In this

case, it is easy to see directly that the limit is 1. However, if we apply L’Hosiptal’s rule we obtain

lim
x→∞

√
1 + x2

x
= lim

x→∞

x/
√
1 + x2

1
= lim

x→∞

x√
1 + x2

= lim
x→∞

1

x/
√
1 + x2

= lim
x→∞

√
1 + x2

x
.


