Lecture 9: Taylor’s Theorem

In the last two lectures we discussed the mean value theorem (which relates a function and its
derivative) and its applications. We now discuss a result called Taylor’s Theorem which relates a
function, its derivative and its higher derivatives. We will see that Taylor’s Theorem is an extension
of the mean value theorem. Though Taylor’s Theorem has several applications in calculus, it basi-
cally deals with approximation of functions by polynomials. The linear approximation or tangent
line approximation, which is described below, gives an idea about the approximation mentioned
above.

Linear Approximation

Let f: R — R be differentiable at zy € R. Consider the linear polynomial P;(x) defined by

Pi(x) = f(x0) + f'(x0)(x — 20)

where x € R. Observe that f(xzo) = Pi(xo) and Pi(x) — f(xo) as x — . Hence Pj(x) is considered
as an approximation of f(z) near zy. Geometrically, this is clear because we approximate the graph

of f near (xg, f(xp)) by the tangent line at (zg, f(z¢)). The following result provides an estimation
of the size of the error Eq(z) = f(z) — Pi(x).

Theorem 9.1(Extended Mean Value Theorem). Let f : [a,b] — R be such that f’ is
continuous on [a,b] and f" exists on (a,b). Suppose xqy € [a,b]. Then, for any x € [a,b]\{zo}, there
exists ¢ between x and xg such that
i
c
Fla) = flzo) + £/ @) — o) + Lo (@ — o)

We will not present the proof of Theorem 9.1 as this result is a particular case of Taylor’s Theorem
which is stated and proved below.

Let f,z and z( be as in Theorem 9.1. We may assume that xg < z. Let M = sup{| f”(¢) |: t €
[0, x]} < co. Then

| Bi(@) | = | f(&) ~ Pila) | < (o 20"

The above estimate gives an idea “how good the approximation Pj(x) is, i.e., how fast the error
Eq(x) goes to 0 as © — (.

Example 9.1. To illustrate the linear approximation and the error estimation, consider f(z) = /=
and o = 1. Then Pi(z) = 5 + % which is the linear approximation to f near xy. Note that
P;i(1.1) = 1.05 which is an approximate value of v/1.1. However, the actual value of v/1.1, up to

five decimal places, is 1.04880. If we take 2 = 1.1, then M = sup{| f”(t) |: t € [1,1.1]} < 1 and

2
Ei(z) < @1° = 1

Naturally, one asks the question: Can we get better estimates for the error if we use approxi-
mation by higher order polynomials? Taylor’s theorem provides the answer affirmatively.

Taylor’s theorem

There might be several ways to approximate a given function by a polynomial of degree greater
than or equal to 2. However, Taylor’s theorem deals with the polynomial which agrees with f and
some of its derivatives at a given point zg, as Pi(x) does in case of the linear approximation.
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Let f: R — R and x5 € R be such that f((zg) exists where n > 1 and f(™(z() denotes the
n—th derivative of f at xg. The polynomial
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P, (z) = f(zo) + f’(l’o)(l’ —x0) +
has the property that P, (xz¢) = f(zo) and Pflk) (z0) = f¥)(z0) for all k = 1,2, ..,n. The polynomial
P, (z) is called Taylor’s polynomial of degree n (with respect to f and xg).

The following theorem, called Taylor’s Theorem, provides an estimate for the error function
E,(z) = f(z) — Py(x) for a given n € N.

Theorem 9.2. Let f : [a,b] — R be such that f™ is continuous on [a,b] and fO+V) ezists on
(a,b). Suppose xg € [a,b]. Then, for any x € [a,b]\{zo}, there exists ¢ between x and xo such that

f/l(xo)
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f(n+1)(c)
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f(@) = f(zo) + f'(xo)(x — z0) + (x—w0)’ 4+ (7 —x0)" + (z —xo)" .

Proof (*). We will construct a new function g (out of f) satisfying g(x) = g(xo) and apply Rolle’s
theorem. Fix zg € [a,b] and = € [a,b]\{zo}. Then, choose M satisfying the following equation:

e (n) T
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For t € R, define
" (n)
gty =ft)+ f(t)(z—1t)+ f2(!t)(m —t)2 4+ ! n!(t) (x —t)" + 1) (z —t)"TL,

Observe that g(z) = f(x) = g(xo). Hence by Rolle’s theorem, there exists ¢ between x and zg such
that

(n+1)
N A ) n_ M n_
g0 =L o M,
This implies that M = f("*+Y(¢) which proves the result. O

Let us see some consequences of Taylor’s theorem.

Application 9.1. 1 (Quadratic approximation). Let f : R — R be twice differentiable at
zo € R. Consider P»(x) defined by

#"(x0)
2

Py(z) = f(xo) + f'(x0)(x — o) + (z — m0)?

which is the Taylor’s polynomial of degree 2 and is called the quadratic approximation to f near
zo. If f,x and zq are considered as in Taylor’s theorem with n = 2 and M = sup{| f®(t) |:
t € [z0,2]} < oo, then the error function |Es(z)| < ¥|z — zo/>. In case f(t) = Vt,z9 = 1 and
z = 1.1, then |Ey(z)| < 525(0.1)3 = 155g5. Verify that P»(1.1) = 1.04875 and compare this value
with Py(1.1).

2. Certain inequalities can be derived using Taylor’s theorem. One example is illustrated below.
For any k£ € N and for all z > 0, we show that
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as follows. By Taylor’s theorem, there exists ¢ € (0, z) such that

1 (_1)7171 (_1)n xn+1
log(1 =g — 2?4 ..+ L " .
og(l+z)=u g%tk +n+1(1+c)”+1
Note that, for any z > 0, CL" 2" < (if p = 2k and SL° 2"~ if p = 2k + 1.
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3. We now illustrate that using certain properties of the second derivative of a given function we
can get certain properties of the function. Let f : [a,b] — R be such that f”(z) > 0 for all « € [a, b].
Fix xy € [a,b]. Using the extended mean value theorem (in short, EMVT) we show the following
property of f. For any z € [a, b],

f(x) > f(xo) + f'(x0)(x — x0)

i.e., the graph of f lies above the tangent line to the graph at (zg, f(z¢)). This is verified as
follows. Let x € [a,b]\{zo}. Then by the EMVT, there exists ¢ between zy and z such that
f(x) = f(xo) + f'(z0)(x — x0) + Wf”(c). This implies the required inequality. With the same
assumption on f (i.e., f’(x) > 0 for all x € [a, b]), another geometric property of f is derived in
Problem 9 in PP 9 The above mentioned properties of a function f are useful for sketching the
graph of f which will be discussed later.



