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Lecture 9: Taylor’s Theorem

In the last two lectures we discussed the mean value theorem (which relates a function and its
derivative) and its applications. We now discuss a result called Taylor’s Theorem which relates a
function, its derivative and its higher derivatives. We will see that Taylor’s Theorem is an extension
of the mean value theorem. Though Taylor’s Theorem has several applications in calculus, it basi-
cally deals with approximation of functions by polynomials. The linear approximation or tangent
line approximation, which is described below, gives an idea about the approximation mentioned
above.

Linear Approximation

Let f : R → R be differentiable at x0 ∈ R. Consider the linear polynomial P1(x) defined by

P1(x) = f(x0) + f ′(x0)(x− x0)

where x ∈ R. Observe that f(x0) = P1(x0) and P1(x) → f(x0) as x → x0. Hence P1(x) is considered
as an approximation of f(x) near x0. Geometrically, this is clear because we approximate the graph
of f near (x0, f(x0)) by the tangent line at (x0, f(x0)). The following result provides an estimation
of the size of the error E1(x) = f(x)− P1(x).

Theorem 9.1(Extended Mean Value Theorem). Let f : [a, b] → R be such that f ′ is
continuous on [a, b] and f ′′ exists on (a, b). Suppose x0 ∈ [a, b]. Then, for any x ∈ [a, b]\{x0}, there
exists c between x and x0 such that

f(x) = f(x0) + f ′(x)(x− x0) +
f ′′(c)

2
(x− x0)

2.

We will not present the proof of Theorem 9.1 as this result is a particular case of Taylor’s Theorem
which is stated and proved below.

Let f, x and x0 be as in Theorem 9.1. We may assume that x0 < x. Let M = sup{| f ′′(t) |: t ∈
[x0, x]} < ∞. Then

| E1(x) | = | f(x)− P1(x) | ≤
M

2
(x− x0)

2.

The above estimate gives an idea “how good the approximation P1(x) is, i.e., how fast the error
E1(x) goes to 0 as x → x0”.

Example 9.1. To illustrate the linear approximation and the error estimation, consider f(x) =
√
x

and x0 = 1. Then P1(x) = x
2 + 1

2 which is the linear approximation to f near x0. Note that

P1(1.1) = 1.05 which is an approximate value of
√
1.1. However, the actual value of

√
1.1, up to

five decimal places, is 1.04880. If we take x = 1.1, then M = sup{| f ′′(t) |: t ∈ [1, 1.1]} ≤ 1
4 and

E1(x) ≤ (0.1)2

8 = 1
800 .

Naturally, one asks the question: Can we get better estimates for the error if we use approxi-
mation by higher order polynomials? Taylor’s theorem provides the answer affirmatively.

Taylor’s theorem

There might be several ways to approximate a given function by a polynomial of degree greater
than or equal to 2. However, Taylor’s theorem deals with the polynomial which agrees with f and
some of its derivatives at a given point x0, as P1(x) does in case of the linear approximation.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in these notes.



2

Let f : R → R and x0 ∈ R be such that f (n)(x0) exists where n ≥ 1 and f (n)(x0) denotes the
n−th derivative of f at x0. The polynomial

Pn(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2 + · · ·+ f (n)(x0)

n!
(x− x0)

n

has the property that Pn(x0) = f(x0) and P
(k)
n (x0) = f (k)(x0) for all k = 1, 2, .., n. The polynomial

Pn(x) is called Taylor’s polynomial of degree n (with respect to f and x0).

The following theorem, called Taylor’s Theorem, provides an estimate for the error function
En(x) = f(x)− Pn(x) for a given n ∈ N.

Theorem 9.2. Let f : [a, b] → R be such that f (n) is continuous on [a, b] and f (n+1) exists on
(a, b). Suppose x0 ∈ [a, b]. Then, for any x ∈ [a, b]\{x0}, there exists c between x and x0 such that

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2 + · · ·+ f (n)(x0)

n!
(x− x0)

n +
f (n+1)(c)

(n+ 1)!
(x− x0)

n+1.

Proof (*). We will construct a new function g (out of f) satisfying g(x) = g(x0) and apply Rolle’s
theorem. Fix x0 ∈ [a, b] and x ∈ [a, b]\{x0}. Then, choose M satisfying the following equation:

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2 + · · ·+ f (n)(x0)

n!
(x− x0)

n +
M

(n+ 1)!
(x− x0)

n+1.

For t ∈ R, define

g(t) = f(t) + f ′(t)(x− t) +
f ′′(t)

2!
(x− t)2 + · · ·+ f (n)(t)

n!
(x− t)n +

M

(n+ 1)!
(x− t)n+1.

Observe that g(x) = f(x) = g(x0). Hence by Rolle’s theorem, there exists c between x and x0 such
that

g′(c) =
f (n+1)(c)

n!
(x− c)n − M

n!
(x− c)n = 0.

This implies that M = f (n+1)(c) which proves the result. �

Let us see some consequences of Taylor’s theorem.

Application 9.1. 1 (Quadratic approximation). Let f : R → R be twice differentiable at
x0 ∈ R. Consider P2(x) defined by

P2(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)

2

which is the Taylor’s polynomial of degree 2 and is called the quadratic approximation to f near
x0. If f, x and x0 are considered as in Taylor’s theorem with n = 2 and M = sup{| f (3)(t) |:
t ∈ [x0, x]} < ∞, then the error function |E2(x)| ≤ M

6 |x − x0|3. In case f(t) =
√
t, x0 = 1 and

x = 1.1, then |E2(x)| ≤ 3
8×6(0.1)

3 = 1
16000 . Verify that P2(1.1) = 1.04875 and compare this value

with P1(1.1).

2. Certain inequalities can be derived using Taylor’s theorem. One example is illustrated below.
For any k ∈ N and for all x > 0, we show that

x− 1

2
x2 + · · · − 1

2k
x2k < log(1 + x) < x− 1

2
x2 + · · ·+ 1

2k + 1
x2k+1
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as follows. By Taylor’s theorem, there exists c ∈ (0, x) such that

log(1 + x) = x− 1

2
x2 + ...+

(−1)n−1

n
xn +

(−1)n

n+ 1

xn+1

(1 + c)n+1
.

Note that, for any x > 0, (−1)n

n+1
xn+1

(1+c)n+1 > 0 if n = 2k and (−1)n

n+1
xn+1

(1+c)n+1 < 0 if n = 2k + 1.

3. We now illustrate that using certain properties of the second derivative of a given function we
can get certain properties of the function. Let f : [a, b] → R be such that f ′′(x) ≥ 0 for all x ∈ [a, b].
Fix x0 ∈ [a, b]. Using the extended mean value theorem (in short, EMVT) we show the following
property of f . For any x ∈ [a, b],

f(x) ≥ f(x0) + f ′(x0)(x− x0)

i.e., the graph of f lies above the tangent line to the graph at (x0, f(x0)). This is verified as
follows. Let x ∈ [a, b]\{x0}. Then by the EMVT, there exists c between x0 and x such that

f(x) = f(x0) + f ′(x0)(x− x0) +
(x−x0)2

2 f ′′(c). This implies the required inequality. With the same
assumption on f (i.e., f ′′(x) ≥ 0 for all x ∈ [a, b]), another geometric property of f is derived in
Problem 9 in PP 9 The above mentioned properties of a function f are useful for sketching the
graph of f which will be discussed later.


