Practice Problems 1: The Real Number System

1. Let $x_{0} \in \mathbb{R}$ and $x_{0} \geq 0$. If $x_{0}<\epsilon$ for every positive real number ϵ, show that $x_{0}=0$.
2. Prove Bernoulli's inequality: for $x>-1,(1+x)^{n} \geq 1+n x$ for all $n \in \mathbb{N}$.
3. Suppose that α and β are any two real numbers satisfying $\alpha<\beta$. Show that there exists $n \in \mathbb{N}$ such that $\alpha<\alpha+\frac{1}{n}<\beta$. Similarly, show that for any two real numbers s and t satisfying $s<t$, there exists $n \in \mathbb{N}$ such that $s<t-\frac{1}{n}<t$.
4. Let A be a non-empty subset of \mathbb{R} and $\beta \in \mathbb{R}$ be an upper bound of A. Suppose for every $n \in \mathbb{N}$, there exists $a_{n} \in A$ such that $a_{n} \geq \beta-\frac{1}{n}$. Show that β is the supremum of A.
5. Find the supremum and infimum of each of the following sets:
(i) $\left\{\frac{m}{m+n}: m, n \in \mathbb{N}\right\}$
(ii) $\left\{\frac{m}{|m|+n}: n \in \mathbb{N}, m \in \mathbb{Z}\right\}$
(iii) $\left\{\frac{n}{1+2 n}: n \in \mathbb{N}\right\}$.
6. Let A be a non-empty bounded above subset of \mathbb{R}. If $\beta \in \mathbb{R}$ is an upper bound of A and $\beta \in A$, show that β is the l.u.b. of A.
7. Let A be a non-empty subset of \mathbb{R} and $\beta \in \mathbb{R}$ an upper bound of A. Show that $\beta=\sup A$ if and only if for every $\epsilon>0$, there is some $a_{0} \in A$ such that $\beta-\varepsilon<a_{0}$.
8. Let $x \in \mathbb{R}$. Show that there exists an integer k such that $k \leq x<k+1$ and an integer l such that $x<l \leq x+1$.
9. (*)
(a) Let $x \in \mathbb{R}$ and $x>0$. If $x^{2}<2$, show that there exists $n_{0} \in \mathbb{N}$ such that $\left(x+\frac{1}{n_{0}}\right)^{2}<2$. Similarly, if $x^{2}>2$, show that there exists $n_{1} \in \mathbb{N}$ such that $\left(x-\frac{1}{n_{1}}\right)^{2}>2$.
(b) Let $A=\left\{x \in \mathbb{R}: x>0, x^{2}<2\right\}$ and $\beta=\sup A$. Show that $\beta^{2}=2$.
10. (*) For a subset A of \mathbb{R}, define $-A=\{-x: x \in A\}$. Suppose that S is a nonempty bounded above subset of \mathbb{R}.
(a) Show that $-S$ is bounded below.
(b) Show that $\inf (-S)=-\sup (S)$.
(c) From (b) conclude that the l.u.b. property of \mathbb{R} implies the g.l.b. property of \mathbb{R} and vice versa.
11. (*) Let k be a positive integer and $x=\sqrt{k}$. Suppose x is rational and $x=\frac{m}{n}$ where $m \in \mathbb{Z}$ and n is the least positive integer such that $n x$ is an integer. Define $n^{\prime}=n(x-[x])$ where $[x]$ is the integer part of x (see the solution of Problem 8 for the definition of $[x]$).
(a) Show that $0 \leq n^{\prime}<n$ and $n^{\prime} x$ is an integer.
(b) Show that $n^{\prime}=0$.
(c) From (a) and (b) conclude that \sqrt{k} is either a positive integer or irrational.
[^0]1. Suppose $x_{0} \neq 0$. Then for $\epsilon_{0}=\frac{x_{0}}{2}, x_{0}>\epsilon_{0}>0$ which is a contradiction.
2. Use Mathematical induction.
3. Since $\beta-\alpha>0$, by the Archimedean property, there exists $n \in \mathbb{N}$ such that $n>\frac{1}{\beta-\alpha}$.
4. If β is not the supremum then there exists an upper bound α of A such that $\alpha<\beta$. Use Problem 3 and find $n \in \mathbb{N}$ such that $\alpha<\beta-\frac{1}{n}$. Since there exists $a_{n} \in A$ such that $\beta-\frac{1}{n}<a_{n}, \alpha$ is not an upper bound of A which is a contradiction.
5. (i) Let $A=\left\{\frac{m}{m+n}: m, n \in \mathbb{N}\right\}$. First note that $0<\frac{m}{m+n}<1$ for all $m, n \in \mathbb{N}$. We guess that $\sup A=1$, because $\frac{n}{1+n}=\frac{1}{1+1 / n} \in A$ for all $n \in \mathbb{N}$ and n can be very large. To show formally that $\sup A=1$, let $\beta=1$. We verify below that β satisfies conditions (i) and (ii) of Definition 1.2. Since 1 is an upper bound of A, let us verify (ii). Suppose β does not satisfy (ii). Then there exists an upper bound α of A such that $\alpha<\beta=1$. Find some $n_{0} \in \mathbb{N}$ such that $\frac{n_{0}}{1+n_{0}}>\alpha$, i.e., $n_{0}>\frac{\alpha}{1-\alpha}$ which is possible because of the Archimedean Property. Note that $\frac{n_{0}}{1+n_{0}} \in A$. This contradicts the fact that α is an upper bound of A. Similarly, we can show that $\inf A=0$.
(ii) Supremum is 1 and infimum is -1 .
(iii) Supremum is $\frac{1}{2}$ and infimum is $\frac{1}{3}$.
6. If β is not the l.u.b. of A, then there exists an upper bound α of A such that $\alpha<\beta$. But $\beta \in A$ which contradicts the fact that α is an upper bound of A.
7. Suppose $\beta=\sup A$. Then β satisfies (ii) of Definition 1.2. Let $\varepsilon>0$. If there is no $a \in A$ such that $\beta-\varepsilon<a$, then we have $a \leq \beta-\varepsilon<\beta$ for all $a \in A$. This implies that $\beta-\varepsilon$ is an upper bound of A. This contradicts (ii) of Definition 1.2. To prove the converse, assume that for every $\epsilon>0$, there is some $a_{0} \in A$ such that $\beta-\varepsilon<a_{0}$. Suppose β does not satisfy (ii). Then there exists an upper bound α of A such that $\alpha<\beta$. This implies that $\alpha<\beta-\frac{\beta-\alpha}{2}<\beta$. By our assumption, there exists $a_{0} \in A$ such that $\beta-\frac{\beta-\alpha}{2}<a_{0}$ which contradicts the fact that α is an upper bound of A.
8. Using the Archimedean property, find $m, n \in \mathbb{N}$ such that $-m<x<n$. Observe that there are only finite number of integers between $-m$ and n. Let k be the largest integer satisfying $-m<k<n$ and $k \leq x$. So, $k \leq x<k+1$. This implies that $x<k+1 \leq x+1$. The integer k satisfying $k \leq x<k+1$ is called the integer part of x and is denoted by $[x]$. Take $l=[x]+1$.
9. (a) Suppose $x^{2}<2$. Observe that $\left(x+\frac{1}{n}\right)^{2}<x^{2}+\frac{1}{n}+\frac{2 x}{n}$ for any $n \in \mathbb{N}$ satisfying $n>1$. Using the Archimedean property, find some $n_{0} \in \mathbb{N}$ such that $x^{2}+\frac{1}{n_{0}}+\frac{2 x}{n_{0}}<2$. This n_{0} will do.
(b) Using (a), justify that the following cases cannot occur: (i) $\beta^{2}<2$ and (ii) $\beta^{2}>2$.
10. (a) Easy to verify.
(b) Let $\beta=\sup S$. We claim that $-\beta=\inf (-S)$. Since $\beta=\sup S, a \leq \beta$ for all $a \in S$. This implies that $-a \geq-\beta$ for all $a \in S$. Hence $-\beta$ is a lower bound of $-S$. If $-\beta$ is not the g.l.b. of $-S$ then there exists a lower bound α of $-S$ such that $-\beta<\alpha$. Verify that $-\alpha$ is an upper bound of S and $-\alpha<\beta$ which is a contradiction.
(c) Assume that \mathbb{R} has the l.u.b. property and S is a non empty bounded below subset of \mathbb{R}. Then from (b) or the proof of (b), we conclude that inf S exists and is equal to $-\sup (-S)$.
11. Each part is easy to verify.

[^0]: Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.

