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Practice Problems 1: The Real Number System

1. Let x0 ∈ R and x0 ≥ 0. If x0 < ε for every positive real number ε, show that x0 = 0.

2. Prove Bernoulli’s inequality: for x > −1, (1 + x)n ≥ 1 + nx for all n ∈ N.

3. Suppose that α and β are any two real numbers satisfying α < β. Show that there exists
n ∈ N such that α < α + 1

n < β. Similarly, show that for any two real numbers s and t
satisfying s < t, there exists n ∈ N such that s < t− 1

n < t.

4. Let A be a non-empty subset of R and β ∈ R be an upper bound of A. Suppose for every
n ∈ N, there exists an ∈ A such that an ≥ β − 1

n . Show that β is the supremum of A.

5. Find the supremum and infimum of each of the following sets:

(i)
{

m
m+n : m,n ∈ N

}
(ii)

{
m

|m|+n : n ∈ N,m ∈ Z
}

(iii)
{

n
1+2n : n ∈ N

}
.

6. Let A be a non-empty bounded above subset of R. If β ∈ R is an upper bound of A and
β ∈ A, show that β is the l.u.b. of A.

7. Let A be a non-empty subset of R and β ∈ R an upper bound of A. Show that β = sup A
if and only if for every ε > 0, there is some a0 ∈ A such that β − ε < a0.

8. Let x ∈ R. Show that there exists an integer k such that k ≤ x < k + 1 and an integer l
such that x < l ≤ x+ 1.

9. (*)

(a) Let x ∈ R and x > 0. If x2 < 2, show that there exists n0 ∈ N such that (x+ 1
n0
)2 < 2.

Similarly, if x2 > 2, show that there exists n1 ∈ N such that (x− 1
n1
)2 > 2.

(b) Let A = {x ∈ R : x > 0, x2 < 2} and β = supA. Show that β2 = 2.

10. (*) For a subset A of R, define −A = {−x : x ∈ A}. Suppose that S is a nonempty bounded
above subset of R.

(a) Show that −S is bounded below.

(b) Show that inf(−S) = −sup(S).

(c) From (b) conclude that the l.u.b. property of R implies the g.l.b. property of R and
vice versa.

11. (*) Let k be a positive integer and x =
√
k. Suppose x is rational and x = m

n where m ∈ Z
and n is the least positive integer such that nx is an integer. Define n′ = n(x− [x]) where
[x] is the integer part of x (see the solution of Problem 8 for the definition of [x]).

(a) Show that 0 ≤ n′ < n and n′x is an integer.

(b) Show that n′ = 0.

(c) From (a) and (b) conclude that
√
k is either a positive integer or irrational.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.
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Practice Problems 1: Hints/Solutions

1. Suppose x0 6= 0. Then for ε0 =
x0
2 , x0 > ε0 > 0 which is a contradiction.

2. Use Mathematical induction.

3. Since β − α > 0, by the Archimedean property, there exists n ∈ N such that n > 1
β−α .

4. If β is not the supremum then there exists an upper bound α of A such that α < β. Use
Problem 3 and find n ∈ N such that α < β − 1

n . Since there exists an ∈ A such that
β − 1

n < an, α is not an upper bound of A which is a contradiction.

5. (i) Let A =
{

m
m+n : m,n ∈ N

}
. First note that 0 < m

m+n < 1 for all m,n ∈ N. We guess

that sup A = 1, because n
1+n = 1

1+1/n ∈ A for all n ∈ N and n can be very large. To show

formally that sup A = 1, let β = 1. We verify below that β satisfies conditions (i) and (ii) of
Definition 1.2. Since 1 is an upper bound of A, let us verify (ii). Suppose β does not satisfy
(ii). Then there exists an upper bound α of A such that α < β = 1. Find some n0 ∈ N such
that n0

1+n0
> α, i.e., n0 >

α
1−α which is possible because of the Archimedean Property. Note

that n0
1+n0

∈ A. This contradicts the fact that α is an upper bound of A. Similarly, we can
show that inf A = 0.

(ii) Supremum is 1 and infimum is −1.

(iii) Supremum is 1
2 and infimum is 1

3 .

6. If β is not the l.u.b. of A, then there exists an upper bound α of A such that α < β. But
β ∈ A which contradicts the fact that α is an upper bound of A.

7. Suppose β = supA. Then β satisfies (ii) of Definition 1.2. Let ε > 0. If there is no a ∈ A
such that β − ε < a, then we have a ≤ β − ε < β for all a ∈ A. This implies that β − ε
is an upper bound of A. This contradicts (ii) of Definition 1.2. To prove the converse,
assume that for every ε > 0, there is some a0 ∈ A such that β− ε < a0. Suppose β does not
satisfy (ii). Then there exists an upper bound α of A such that α < β. This implies that
α < β − β−α

2 < β. By our assumption, there exists a0 ∈ A such that β − β−α
2 < a0 which

contradicts the fact that α is an upper bound of A.

8. Using the Archimedean property, find m,n ∈ N such that −m < x < n. Observe that there
are only finite number of integers between −m and n. Let k be the largest integer satisfying
−m < k < n and k ≤ x. So, k ≤ x < k + 1. This implies that x < k + 1 ≤ x + 1. The
integer k satisfying k ≤ x < k+1 is called the integer part of x and is denoted by [x]. Take
l = [x] + 1.

9. (a) Suppose x2 < 2. Observe that (x + 1
n)

2 < x2 + 1
n + 2x

n for any n ∈ N satisfying n > 1.
Using the Archimedean property, find some n0 ∈ N such that x2 + 1

n0
+ 2x

n0
< 2. This n0

will do.

(b) Using (a), justify that the following cases cannot occur: (i) β2 < 2 and (ii) β2 > 2.

10. (a) Easy to verify.

(b) Let β = sup S. We claim that −β = inf(−S). Since β = sup S, a ≤ β for all a ∈ S.
This implies that −a ≥ −β for all a ∈ S. Hence −β is a lower bound of −S. If −β is not
the g.l.b. of −S then there exists a lower bound α of −S such that −β < α. Verify that
−α is an upper bound of S and −α < β which is a contradiction.

(c) Assume that R has the l.u.b. property and S is a non empty bounded below subset of R.
Then from (b) or the proof of (b), we conclude that inf S exists and is equal to −sup(−S).

11. Each part is easy to verify.


