Practice Problems 1: The Real Number System

- 1. Let $x_0 \in \mathbb{R}$ and $x_0 \ge 0$. If $x_0 < \epsilon$ for every positive real number ϵ , show that $x_0 = 0$.
- 2. Prove Bernoulli's inequality: for x > -1, $(1 + x)^n \ge 1 + nx$ for all $n \in \mathbb{N}$.
- 3. Suppose that α and β are any two real numbers satisfying $\alpha < \beta$. Show that there exists $n \in \mathbb{N}$ such that $\alpha < \alpha + \frac{1}{n} < \beta$. Similarly, show that for any two real numbers s and t satisfying s < t, there exists $n \in \mathbb{N}$ such that $s < t \frac{1}{n} < t$.
- 4. Let A be a non-empty subset of \mathbb{R} and $\beta \in \mathbb{R}$ be an upper bound of A. Suppose for every $n \in \mathbb{N}$, there exists $a_n \in A$ such that $a_n \geq \beta \frac{1}{n}$. Show that β is the supremum of A.
- 5. Find the supremum and infimum of each of the following sets:

(i)
$$\left\{\frac{m}{m+n}: m, n \in \mathbb{N}\right\}$$
 (ii) $\left\{\frac{m}{|m|+n}: n \in \mathbb{N}, m \in \mathbb{Z}\right\}$ (iii) $\left\{\frac{n}{1+2n}: n \in \mathbb{N}\right\}$.

- 6. Let A be a non-empty bounded above subset of \mathbb{R} . If $\beta \in \mathbb{R}$ is an upper bound of A and $\beta \in A$, show that β is the l.u.b. of A.
- 7. Let A be a non-empty subset of \mathbb{R} and $\beta \in \mathbb{R}$ an upper bound of A. Show that $\beta = \sup A$ if and only if for every $\epsilon > 0$, there is some $a_0 \in A$ such that $\beta \varepsilon < a_0$.
- 8. Let $x \in \mathbb{R}$. Show that there exists an integer k such that $k \leq x < k+1$ and an integer l such that $x < l \leq x+1$.
- 9. (*)
 - (a) Let $x \in \mathbb{R}$ and x > 0. If $x^2 < 2$, show that there exists $n_0 \in \mathbb{N}$ such that $(x + \frac{1}{n_0})^2 < 2$. Similarly, if $x^2 > 2$, show that there exists $n_1 \in \mathbb{N}$ such that $(x - \frac{1}{n_1})^2 > 2$.
 - (b) Let $A = \{x \in \mathbb{R} : x > 0, x^2 < 2\}$ and $\beta = \sup A$. Show that $\beta^2 = 2$.
- 10. (*) For a subset A of \mathbb{R} , define $-A = \{-x : x \in A\}$. Suppose that S is a nonempty bounded above subset of \mathbb{R} .
 - (a) Show that -S is bounded below.
 - (b) Show that $\inf(-S) = -\sup(S)$.
 - (c) From (b) conclude that the l.u.b. property of \mathbb{R} implies the g.l.b. property of \mathbb{R} and vice versa.
- 11. (*) Let k be a positive integer and $x = \sqrt{k}$. Suppose x is rational and $x = \frac{m}{n}$ where $m \in \mathbb{Z}$ and n is the least positive integer such that nx is an integer. Define n' = n(x [x]) where [x] is the integer part of x (see the solution of Problem 8 for the definition of [x]).
 - (a) Show that $0 \le n' < n$ and n'x is an integer.
 - (b) Show that n' = 0.
 - (c) From (a) and (b) conclude that \sqrt{k} is either a positive integer or irrational.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.

Practice Problems 1: Hints/Solutions

- 1. Suppose $x_0 \neq 0$. Then for $\epsilon_0 = \frac{x_0}{2}$, $x_0 > \epsilon_0 > 0$ which is a contradiction.
- 2. Use Mathematical induction.
- 3. Since $\beta \alpha > 0$, by the Archimedean property, there exists $n \in \mathbb{N}$ such that $n > \frac{1}{\beta \alpha}$.
- 4. If β is not the supremum then there exists an upper bound α of A such that $\alpha < \beta$. Use Problem 3 and find $n \in \mathbb{N}$ such that $\alpha < \beta - \frac{1}{n}$. Since there exists $a_n \in A$ such that $\beta - \frac{1}{n} < a_n, \alpha$ is not an upper bound of A which is a contradiction.
- 5. (i) Let $A = \left\{\frac{m}{m+n} : m, n \in \mathbb{N}\right\}$. First note that $0 < \frac{m}{m+n} < 1$ for all $m, n \in \mathbb{N}$. We guess that $\sup A = 1$, because $\frac{n}{1+n} = \frac{1}{1+1/n} \in A$ for all $n \in \mathbb{N}$ and n can be very large. To show formally that $\sup A = 1$, let $\beta = 1$. We verify below that β satisfies conditions (i) and (ii) of Definition 1.2. Since 1 is an upper bound of A, let us verify (ii). Suppose β does not satisfy (ii). Then there exists an upper bound α of A such that $\alpha < \beta = 1$. Find some $n_0 \in \mathbb{N}$ such that $\frac{n_0}{1+n_0} > \alpha$, i.e., $n_0 > \frac{\alpha}{1-\alpha}$ which is possible because of the Archimedean Property. Note that $\frac{n_0}{1+n_0} \in A$. This contradicts the fact that α is an upper bound of A. Similarly, we can show that inf A = 0.
 - (ii) Supremum is 1 and infimum is -1.
 - (iii) Supremum is $\frac{1}{2}$ and infimum is $\frac{1}{3}$.
- 6. If β is not the l.u.b. of A, then there exists an upper bound α of A such that $\alpha < \beta$. But $\beta \in A$ which contradicts the fact that α is an upper bound of A.
- 7. Suppose $\beta = \sup A$. Then β satisfies (ii) of Definition 1.2. Let $\varepsilon > 0$. If there is no $a \in A$ such that $\beta \varepsilon < a$, then we have $a \leq \beta \varepsilon < \beta$ for all $a \in A$. This implies that $\beta \varepsilon$ is an upper bound of A. This contradicts (ii) of Definition 1.2. To prove the converse, assume that for every $\epsilon > 0$, there is some $a_0 \in A$ such that $\beta \varepsilon < a_0$. Suppose β does not satisfy (ii). Then there exists an upper bound α of A such that $\alpha < \beta$. This implies that $\alpha < \beta \frac{\beta \alpha}{2} < \beta$. By our assumption, there exists $a_0 \in A$ such that $\beta \frac{\beta \alpha}{2} < a_0$ which contradicts the fact that α is an upper bound of A.
- 8. Using the Archimedean property, find $m, n \in \mathbb{N}$ such that -m < x < n. Observe that there are only finite number of integers between -m and n. Let k be the largest integer satisfying -m < k < n and $k \le x$. So, $k \le x < k + 1$. This implies that $x < k + 1 \le x + 1$. The integer k satisfying $k \le x < k + 1$ is called the integer part of x and is denoted by [x]. Take l = [x] + 1.
- 9. (a) Suppose $x^2 < 2$. Observe that $(x + \frac{1}{n})^2 < x^2 + \frac{1}{n} + \frac{2x}{n}$ for any $n \in \mathbb{N}$ satisfying n > 1. Using the Archimedean property, find some $n_0 \in \mathbb{N}$ such that $x^2 + \frac{1}{n_0} + \frac{2x}{n_0} < 2$. This n_0 will do.
 - (b) Using (a), justify that the following cases cannot occur: (i) $\beta^2 < 2$ and (ii) $\beta^2 > 2$.
- 10. (a) Easy to verify.
 - (b) Let $\beta = \sup S$. We claim that $-\beta = \inf(-S)$. Since $\beta = \sup S$, $a \leq \beta$ for all $a \in S$. This implies that $-a \geq -\beta$ for all $a \in S$. Hence $-\beta$ is a lower bound of -S. If $-\beta$ is not the g.l.b. of -S then there exists a lower bound α of -S such that $-\beta < \alpha$. Verify that $-\alpha$ is an upper bound of S and $-\alpha < \beta$ which is a contradiction.

(c) Assume that \mathbb{R} has the l.u.b. property and S is a non empty bounded below subset of \mathbb{R} . Then from (b) or the proof of (b), we conclude that inf S exists and is equal to $-\sup(-S)$.

11. Each part is easy to verify.