Practice Problems 12: Convergence of a series, Leibniz test

- 1. Show that every sequence is a sequence of partial sums of a series.
- 2. Show that $\sum_{n=1}^{\infty} (a_n a_{n+1})$ converges if and only if the sequence (a_n) converges. Verify the convergence/divergence of the following series:

(a)
$$\sum_{n=1}^{\infty} \frac{4}{(4n-3)(4n+1)}$$
 (b) $\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$ (c) $\sum_{n=1}^{\infty} \frac{n}{(n^2+1)^2-n^2}$ (d) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+\sqrt{n-1}}$.

- 3. Show that the series $\frac{1}{2} + \frac{1}{3} + \frac{2}{3} + \frac{1}{4} + \frac{2}{4} + \frac{3}{4} + \frac{1}{5} + \frac{2}{5} + \frac{3}{5} + \frac{4}{5} + \frac{1}{6} + \frac{2}{6} + \cdots$ diverges.
- 4. Let (S_n) denote the sequence of partial sums of the series $\sum_{n=1}^{\infty} a_n$. Suppose $\sum_{n=1}^{\infty} S_n$ converges. Show that $\sum_{n=1}^{\infty} a_n$ converges.
- 5. Consider the sequence 0.2, 0.22, 0.222, 0.222, By writing this sequence as a sequence of partial sums of a series, find the limit of this sequence.
- 6. In each of the following cases, discuss the convergence of the series $\sum_{n=1}^{\infty} a_n$ where a_n equals:

(a)
$$\sin\left(\frac{(-1)^n}{n^p}\right)$$
, $p > 0$ (b) $(-1)^n \frac{(\ln n)^3}{n}$ (c) $\frac{\cos(\pi n) \ln n}{n}$

- 7. Show that the series $\sum_{n=1}^{\infty} a_n$ converges if and only if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $|\sum_{i=m}^{n} a_i| < \epsilon$ for all $m, n \in \mathbb{N}$ satisfying $n \ge m \ge N$.
- 8. Let $\sum_{n=1}^{\infty} a_n$ be a convergent series. Consider $\sum_{n=1}^{\infty} b_n$ and $\sum_{n=1}^{\infty} c_n$ where $b_n = \max\{a_n, 0\}$ and $c_n = \min\{a_n, 0\}$ (i.e., series of positive terms and series of negative terms of $\sum_{n=1}^{\infty} a_n$).
 - (a) If $\sum_{n=1}^{\infty} |a_n|$ converges then show that both $\sum_{n=1}^{\infty} b_n$ and $\sum_{n=1}^{\infty} c_n$ converge. (b) If $\sum_{n=1}^{\infty} |a_n|$ diverges then show that both $\sum_{n=1}^{\infty} b_n$ and $\sum_{n=1}^{\infty} c_n$ diverge.
- 9. Let $\sum_{n=1}^{\infty} a_n$ be a convergent series and $\sum_{n=1}^{\infty} b_n$ is obtained by grouping finite number of terms of $\sum_{n=1}^{\infty} a_n$ such as $(a_1 + a_2 + \dots + a_{m_1}) + (a_{m_1+1} + a_{m_1+2} + \dots + a_{m_2}) + \dots$ for some m_1, m_2, \dots (Here $b_1 = a_1 + a_2 + \dots + a_{m_1}$, $b_2 = a_{m_1+1} + a_{m_1+2} + \dots + a_{m_2}$ and so on). Show that $\sum_{n=1}^{\infty} b_n$ converges and has the same limit as $\sum_{n=1}^{\infty} a_n$. What happens if $\sum_{n=1}^{\infty} a_n$ diverges ?
- 10. Let $a_n \ge 0$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} a_n$ be a convergent series. Suppose $\sum_{n=1}^{\infty} b_n$ is obtained by rearranging the terms of $\sum_{n=1}^{\infty} a_n$ (*i.e.*, the terms of $\sum_{n=1}^{\infty} b_n$ are same as those of $\sum_{n=1}^{\infty} a_n$ but they occur in different order). Show that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converge to the same limit.
- 11. Consider the series $\sum_{n=1}^{\infty} a_n$ where $a_n = \frac{(-1)^{n+1}}{n}$. Show that the series

$$(1 - \frac{1}{2}) - \frac{1}{4} + (\frac{1}{3} - \frac{1}{6}) - \frac{1}{8} + (\frac{1}{5} - \frac{1}{10}) - \frac{1}{12} + \cdots,$$

which is obtained from $\sum_{n=1}^{\infty} a_n$ by rearranging and grouping, is $\frac{1}{2} \sum_{n=1}^{\infty} a_n$.

- 12. (*) Let (a_n) be a decreasing sequence, $a_n \ge 0$ and $\lim_{n \to \infty} a_n = 0$. For each $n \in \mathbb{N}$, let $b_n = \frac{a_1 + a_2 + \dots + a_n}{n}$. Show that $\sum_{n=1}^{\infty} (-1)^n b_n$ converges
- 13. (*) Consider the series $\sum_{n=1}^{\infty} a_n$ where $a_n = \frac{(-1)^{n+1}}{n}$. Let $\alpha \in \mathbb{R}$; for example take $\alpha = 2013$.
 - (a) Show that there exists a smallest odd positive integer N_1 such that $1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{N_1} > \frac{1}{2}$ 2013. Further show that $1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{N_1} - \frac{1}{2} \le 2013$.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.

(b) Show that there exists a smallest odd positive integer $N_2 > N_1$ such that

$$1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{N_1} - \frac{1}{2} + \frac{1}{N_1 + 2} + \dots + \frac{1}{N_2} > 2013.$$

Further show that $1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{N_1} - \frac{1}{2} + \frac{1}{N_1 + 2} + \dots + \frac{1}{N_2} - \frac{1}{4} \le 2013.$

(c) Show that
$$0 \le \left(1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{N_1} - \frac{1}{2} + \frac{1}{N_1 + 2} + \dots + \frac{1}{N_2}\right) - 2013 \le \frac{1}{N_2}$$
 and
 $0 \le 2013 - \left(1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{N_1} - \frac{1}{2} + \frac{1}{N_1 + 2} + \dots + \frac{1}{N_2} - \frac{1}{4}\right) \le \frac{1}{4}.$

(d) Following (b), consider the series of rearrangement

 $1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{N_1} - \frac{1}{2} + \frac{1}{N_1 + 2} + \dots + \frac{1}{N_2} - \frac{1}{4} + \frac{1}{N_2 + 2} + \dots + \frac{1}{N_3} - \frac{1}{6} + \dots$ Show that

$$\left(1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{N_1} - \frac{1}{2} + \frac{1}{N_1 + 2} + \dots + \frac{1}{N_2} - \frac{1}{4} + \frac{1}{N_2 + 2} + \dots + \frac{1}{N_3}\right) - 2013 \le \frac{1}{N_3}$$

Further, for any j such that $N_2 + 2 \le N_2 + 2j \le N_3 - 2$, show that

$$2013 - \left(1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{N_1} - \frac{1}{2} + \frac{1}{N_1 + 2} + \dots + \frac{1}{N_2} - \frac{1}{4} + \frac{1}{N_2 + 2} + \dots + \frac{1}{N_2 + 2j}\right) \le \frac{1}{4}$$

- (e) Show that the series of rearrangement given in (d) converges to 2013.
- 14. (*) Let (A_n) and (S_n) be the sequences of partial sums of the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} \frac{a_n}{n}$ respectively. If $\sum_{n=1}^{\infty} a_n$ is convergent or the sequence of partial sums (A_n) is bounded then show that
 - (a) $S_{n+1} = A_1(\frac{1}{1} \frac{1}{2}) + A_2(\frac{1}{2} \frac{1}{3}) + \dots + A_n(\frac{1}{n} \frac{1}{n+1}) + \frac{A_n}{n+1}$, for n > 1;
 - (b) the series $|A_1(\frac{1}{1} \frac{1}{2})| + |A_2(\frac{1}{2} \frac{1}{3})| + \dots + |A_n(\frac{1}{n} \frac{1}{n+1})| + \dots$ converges;
 - (c) the series $\sum_{n=1}^{\infty} \frac{a_n}{n}$ converges.
- 15. (a) (*) (Dirichlet test) Let $\sum_{n=1}^{\infty} a_n$ be a series whose sequence of partial sums is bounded. Let (b_n) be a decreasing sequence which converges to 0. Show that $\sum_{n=1}^{\infty} a_n b_n$ converges. Observe that Leibniz test is a particular case of the Dirichlet test.
 - (b) (*) (Abel's test) Let $\sum_{n=1}^{\infty} a_n$ be a convergent series and (b_n) be a monotonic convergent sequence. Show that $\sum_{n=1}^{\infty} a_n b_n$ converges.
 - (c) Show that the series $1 \frac{1}{2} \frac{1}{3} + \frac{1}{4} + \frac{1}{5} \frac{1}{6} \frac{1}{7} + \cdots$ converges whereas the series $1 + \frac{1}{2} \frac{1}{3} + \frac{1}{4} + \frac{1}{5} \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \cdots$ diverges.
 - (d) Show that the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} (1+\frac{1}{n})^n$, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \cos \frac{1}{n}$ and $\sum_{n=1}^{\infty} (-1)^n \frac{\tan^{-1} n}{\sqrt{n}}$ converge.

Practice Problems 11 : Hints/Solutions

- 1. Let (a_n) be the given sequence. Consider the series $a_1 + (a_2 a_1) + (a_3 a_2) + \cdots$
- 2. Note that the sequence of partial sums of the series $\sum_{n=1}^{\infty} (a_n a_{n+1})$ is $(a_1 a_{n+1})$. The series given in (a),(b) and (c) converge. The series given in (c) diverges.

- 3. The *n*th term of the series does not converge to 0.
- 4. If $\sum_{n=1}^{\infty} S_n$ converges, then $S_n \to 0$. Apply the definition of the convergence of a series.
- 5. The sequence is $\frac{2}{10}, \frac{2}{10}, \frac{2}{10}, \frac{2}{10}, \frac{2}{10}, \frac{2}{10}, \frac{2}{10^2}, \frac{2}{10^2}, \frac{2}{10^3}, \dots$ which is a sequence of partial sums of the series $\sum_{n=1}^{\infty} \frac{2}{10^n}$. The given sequence converges to $\frac{2}{9}$.
- 6. (a) Converges by Leibniz test: $\sin(\frac{(-1)^n}{n^p}) = (-1)^n \sin(\frac{1}{n^p}).$
 - (b) Converges by Leibniz test: If $f(x) = \frac{(\ln x)^3}{x}$ then f'(x) < 0 for all $x > e^3$.
 - (c) Converges by Leibniz test: $\cos(\pi n) = (-1)^n$.
- 7. Use the fact that the series $\sum_{n=1}^{\infty} a_n$ converges if and only if its sequence of partial sums (S_n) satisfies the Cauchy criterion.
- 8. (a) Observe that $2b_n = a_n + |a_n|$ and $2c_n = a_n |a_n|$ for all $n \in \mathbb{N}$. (b) Observe that $|a_n| = 2b_n - a_n$ and $|a_n| = a_n - 2c_n$ for all $n \in \mathbb{N}$.
- 9. Let (S_n) and $(\overline{S_k})$ be the sequences of partial sums of $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ respectively. Observe that $(\overline{S_k})$ is a subsequence of (S_n) . For the next part, consider the series $1 - 1 + 1 - 1 + 1 - 1 + \cdots$ and the grouping $(1 - 1) + (1 - 1) + (1 - 1) + \cdots$.
- 10. Let (S_n) and $(\overline{S_n})$ be the sequences of partial sums of $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ respectively. Note that both (S_n) and $(\overline{S_n})$ are increasing sequences. Suppose $S_n \to S$ for some S. Then $\overline{S_n} \leq S$ for all n. Therefore $\overline{S_n}$ converges. If $\overline{S_n} \to \overline{S}$ for some \overline{S} , then $\overline{S} \leq S$. For the proof of $S \leq \overline{S}$, interchange a_n and b_n .
- 11. Trivial.
- 12. Note that $b_{n+1} b_n = \frac{1}{n+1}(a_1 + a_2 + \ldots + a_{n+1}) \frac{1}{n}(a_1 + \ldots + a_n) = \frac{a_{n+1}}{n+1} \frac{(a_1 + \ldots + a_n)}{n(n+1)}$. Since (a_n) is decreasing, $a_1 + \ldots + a_n \ge na_n$. Therefore, $b_{n+1} b_n \le \frac{a_{n+1} a_n}{n+1} \le 0$. Hence (b_n) is decreasing. It follows from Problem 15 of PP2 that $b_n \to 0$. Apply the Leibniz test.
- 13. (a) Since the series $1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots$ diverges, the sequence of the partial sums is unbounded. Therefore there exists a smallest odd positive integer N_1 such that $1 + \frac{1}{3} + \cdots + \frac{1}{N_1} > 2013$. If $1 + \frac{1}{3} + \frac{1}{5} + \cdots + \frac{1}{N_1 - 2} + \frac{1}{N_1} - \frac{1}{2} > 2013$, then $1 + \frac{1}{3} + \frac{1}{5} + \cdots + \frac{1}{N_1 - 2} > 2013$ as $\frac{1}{N_1} - \frac{1}{2} < 0$ which is a contradiction.
 - (b) Similar to (a).
 - (c) From (b), it follows that $1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{N_1} \frac{1}{2} + \frac{1}{N_1+2} + \dots + \frac{1}{N_2-2} \le 2013$. That is $1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{N_1} \frac{1}{2} + \frac{1}{N_1+2} + \dots + \frac{1}{N_2-2} + \frac{1}{N_2} \le 2013 + \frac{1}{N_2}$. This implies the first inequality of (c).

From the first inequality of (b), $1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{N_1} - \frac{1}{2} + \frac{1}{N_1+2} + \dots + \frac{1}{N_2} - \frac{1}{4} > 2013 - \frac{1}{4}$. This implies the second inequality of (c).

- (d) The proof of the first part is similar to the proof of the first part of (c). The second part follows from the second part of (c).
- (e) Observe from (c) and (d) that the sequence of partial sums of the series of rearrangement converges to 2013.
- 14. (a) Use the fact that $a_n = A_n A_{n-1}$.
 - (b) Since (A_n) is a bounded sequence, let $|A_n| \leq M$ for all $n \in \mathbb{N}$ and for some M. Therefore $|A_1(\frac{1}{1} - \frac{1}{2})| + |A_2(\frac{1}{2} - \frac{1}{3})| + \dots + |A_n(\frac{1}{n} - \frac{1}{n+1})| \leq M(1 - \frac{1}{n+1}) < M$.

- (c) From (b), the sequence of partial sums of the series $A_1(\frac{1}{1}-\frac{1}{2})+A_2(\frac{1}{2}-\frac{1}{3})+\cdots$ converges. Therefore (S_n) converges.
- 15. (a) Compare the Dirichlet Test with Practice Problems 12. Repeat the steps (a)-(c) given in the problem mentioned above by taking b_n in place of $\frac{1}{n}$.
 - (b) Compare Abel's Test with Practice Problems 12. Repeat the steps (a)-(c) given in the problem mentioned above by taking b_n in place of $\frac{1}{n}$. In Abel's test (b_n) could be increasing. However, the proofs of the steps (a)-(c) go through.
 - (c) Convergence of the first series follows from the Dirichlet test. For the divergence of the second series, consider the sequence of partial sums (for instance, $S_3 \ge \frac{1}{3}$, $S_6 \ge \frac{1}{3} + \frac{1}{6}$, $S_9 \ge \frac{1}{3} + \frac{1}{6} + \frac{1}{9}$,...).
 - (d) Apply Abel's test.