
Practice Problems 12: Convergence of a series, Leibniz test

1. Show that every sequence is a sequence of partial sums of a series.

2. Show that
∑∞

n=1 (an − an+1) converges if and only if the sequence (an) converges. Verify
the convergence/divergence of the following series:

(a)
∑∞

n=1
4

(4n−3)(4n+1) (b)
∑∞

n=1
2n+1

n2(n+1)2
(c)

∑∞
n=1

n
(n2+1)2−n2 (d)

∑∞
n=1

1√
n+

√
n−1

.

3. Show that the series 1
2 + 1

3 + 2
3 + 1

4 + 2
4 + 3

4 + 1
5 + 2

5 + 3
5 + 4

5 + 1
6 + 2

6 + · · · diverges.

4. Let (Sn) denote the sequence of partial sums of the series
∑∞

n=1 an. Suppose
∑∞

n=1 Sn

converges. Show that
∑∞

n=1 an converges.

5. Consider the sequence 0.2, 0.22, 0.222, 0.2222, .... By writing this sequence as a sequence
of partial sums of a series, find the limit of this sequence.

6. In each of the following cases, discuss the convergence of the series
∑∞

n=1 an where an equals:

(a) sin
(
(−1)n

np

)
, p > 0 (b) (−1)n (ln n)3

n (c) cos(πn) ln n
n

7. Show that the series
∑∞

n=1 an converges if and only if for every ε > 0, there exists N ∈ N
such that |

∑n
i=m ai| < ε for all m,n ∈ N satisfying n ≥ m ≥ N .

8. Let
∑∞

n=1 an be a convergent series. Consider
∑∞

n=1 bn and
∑∞

n=1 cn where bn = max{an, 0}
and cn = min{an, 0} (i.e., series of positive terms and series of negative terms of

∑∞
n=1 an).

(a) If
∑∞

n=1 |an| converges then show that both
∑∞

n=1 bn and
∑∞

n=1 cn converge.

(b) If
∑∞

n=1 |an| diverges then show that both
∑∞

n=1 bn and
∑∞

n=1 cn diverge.

9. Let
∑∞

n=1 an be a convergent series and
∑∞

n=1 bn is obtained by grouping finite number of
terms of

∑∞
n=1 an such as (a1 + a2 + · · · + am1) + (am1+1 + am1+2 + · · · + am2) + · · · for

some m1,m2, ... (Here b1 = a1 + a2 + · · · + am1 , b2 = am1+1 + am1+2 + · · · + am2 and so
on). Show that

∑∞
n=1 bn converges and has the same limit as

∑∞
n=1 an. What happens if∑∞

n=1 an diverges ?

10. Let an ≥ 0 for all n ∈ N and
∑∞

n=1 an be a convergent series. Suppose
∑∞

n=1 bn is obtained
by rearranging the terms of

∑∞
n=1 an (i.e., the terms of

∑∞
n=1 bn are same as those of∑∞

n=1 an but they occur in different order). Show that
∑∞

n=1 an and
∑∞

n=1 bn converge to
the same limit.

11. Consider the series
∑∞

n=1 an where an = (−1)n+1

n . Show that the series

(1− 1

2
)− 1

4
+ (

1

3
− 1

6
)− 1

8
+ (

1

5
− 1

10
)− 1

12
+ · · ·,

which is obtained from
∑∞

n=1 an by rearranging and grouping, is 1
2

∑∞
n=1 an.

12. (*) Let (an) be a decreasing sequence, an ≥ 0 and lim
n→∞

an = 0. For each n ∈ N, let

bn = a1+a2+···+an
n . Show that

∑∞
n=1(−1)nbn converges

13. (*) Consider the series
∑∞

n=1 an where an = (−1)n+1

n . Let α ∈ R; for example take α = 2013.

(a) Show that there exists a smallest odd positive integer N1 such that 1+ 1
3+

1
5+···+ 1

N1
>

2013. Further show that 1 + 1
3 + 1

5 + · · ·+ 1
N1

− 1
2 ≤ 2013.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.



(b) Show that there exists a smallest odd positive integer N2 > N1 such that

1 +
1

3
+

1

5
+ · · ·+ 1

N1
− 1

2
+

1

N1 + 2
+ · · ·+ 1

N2
> 2013.

Further show that 1 + 1
3 + 1

5 + · · ·+ 1
N1

− 1
2 + 1

N1+2 + · · ·+ 1
N2

− 1
4 ≤ 2013.

(c) Show that 0 ≤
(
1 + 1

3 + 1
5 + · · ·+ 1

N1
− 1

2 + 1
N1+2 + ...+ 1

N2

)
− 2013 ≤ 1

N2
and

0 ≤ 2013−
(
1 + 1

3 + 1
5 + · · ·+ 1

N1
− 1

2 + 1
N1+2 + · · ·+ 1

N2
− 1

4

)
≤ 1

4 .

(d) Following (b), consider the series of rearrangement

1 + 1
3 + 1

5 + · · ·+ 1
N1

− 1
2 + 1

N1+2 + · · ·+ 1
N2

− 1
4 + 1

N2+2 + · · ·+ 1
N3

− 1
6 + · · ·.

Show that(
1 + 1

3 + 1
5 + · · ·+ 1

N1
− 1

2 + 1
N1+2 + · · ·+ 1

N2
− 1

4 + 1
N2+2 + · · ·+ 1

N3

)
− 2013 ≤ 1

N3
.

Further, for any j such that N2 + 2 ≤ N2 + 2j ≤ N3 − 2, show that

2013−
(
1 + 1

3 + 1
5 + · · ·+ 1

N1
− 1

2 + 1
N1+2 + · · ·+ 1

N2
− 1

4 + 1
N2+2 + · · ·+ 1

N2+2j

)
≤ 1

4 .

(e) Show that the series of rearrangement given in (d) converges to 2013.

14. (*) Let (An) and (Sn) be the sequences of partial sums of the series
∑∞

n=1 an and
∑∞

n=1
an
n

respectively. If
∑∞

n=1 an is convergent or the sequence of partial sums (An) is bounded then
show that

(a) Sn+1 = A1(
1
1 − 1

2) +A2(
1
2 − 1

3) + · · ·+An(
1
n − 1

n+1) +
An
n+1 , for n > 1;

(b) the series |A1(
1
1 − 1

2)|+ |A2(
1
2 − 1

3)|+ · · ·+ |An(
1
n − 1

n+1)|+ · · · converges;
(c) the series

∑∞
n=1

an
n converges.

15. (a) (*) (Dirichlet test) Let
∑∞

n=1 an be a series whose sequence of partial sums is
bounded. Let (bn) be a decreasing sequence which converges to 0. Show that

∑∞
n=1 anbn

converges. Observe that Leibniz test is a particular case of the Dirichlet test.

(b) (*) (Abel’s test) Let
∑∞

n=1 an be a convergent series and (bn) be a monotonic con-
vergent sequence. Show that

∑∞
n=1 anbn converges.

(c) Show that the series 1 − 1
2 − 1

3 + 1
4 + 1

5 − 1
6 − 1

7 + · · · converges whereas the series
1 + 1

2 − 1
3 + 1

4 + 1
5 − 1

6 + 1
7 + 1

8 − · · · diverges.

(d) Show that the series
∑∞

n=1
(−1)n

n (1 + 1
n)

n,
∑∞

n=1
(−1)n

n cos 1
n and

∑∞
n=1(−1)n tan−1 n√

n
converge.

Practice Problems 11 : Hints/Solutions

1. Let (an) be the given sequence. Consider the series a1 + (a2 − a1) + (a3 − a2) + · · ·.

2. Note that the sequence of partial sums of the series
∑∞

n=1(an − an+1) is (a1 − an+1).

The series given in (a),(b) and (c) converge. The series given in (c) diverges.



3. The nth term of the series does not converge to 0.

4. If
∑∞

n=1 Sn converges, then Sn → 0. Apply the definition of the convergence of a series.

5. The sequence is 2
10 ,

2
10 + 2

102
, 2
10 + 2

102
+ 2

103
, ... which is a sequence of partial sums of the

series
∑∞

n=1
2

10n . The given sequence converges to 2
9 .

6. (a) Converges by Leibniz test: sin( (−1)n

np ) = (−1)n sin( 1
np ).

(b) Converges by Leibniz test: If f(x) = (ln x)3

x then f ′(x) < 0 for all x > e3.

(c) Converges by Leibniz test: cos(πn) = (−1)n.

7. Use the fact that the series
∑∞

n=1 an converges if and only if its sequence of partial sums
(Sn) satisfies the Cauchy criterion.

8. (a) Observe that 2bn = an + |an| and 2cn = an − |an| for all n ∈ N.
(b) Observe that |an| = 2bn − an and |an| = an − 2cn for all n ∈ N.

9. Let (Sn) and (Sk) be the sequences of partial sums of
∑∞

n=1 an and
∑∞

n=1 bn respectively.
Observe that (Sk) is a subsequence of (Sn). For the next part, consider the series 1 − 1 +
1− 1 + 1− 1 + · · · and the grouping (1− 1) + (1− 1) + (1− 1) + · · ·.

10. Let (Sn) and (Sn) be the sequences of partial sums of
∑∞

n=1 an and
∑∞

n=1 bn respectively.
Note that both (Sn) and (Sn) are increasing sequences. Suppose Sn → S for some S. Then
Sn ≤ S for all n. Therefore Sn converges. If Sn → S for some S, then S ≤ S. For the proof
of S ≤ S, interchange an and bn.

11. Trivial.

12. Note that bn+1− bn = 1
n+1(a1+ a2+ ...+ an+1)− 1

n(a1+ ...+ an) =
an+1

n+1 − (a1+...+an)
n(n+1) . Since

(an) is decreasing, a1 + ... + an ≥ nan. Therefore, bn+1 − bn ≤ an+1−an
n+1 ≤ 0. Hence (bn) is

decreasing. It follows from Problem 15 of PP2 that bn → 0. Apply the Leibniz test.

13. (a) Since the series 1+ 1
3+

1
5+

1
7+··· diverges, the sequence of the partial sums is unbounded.

Therefore there exists a smallest odd positive integerN1 such that 1+ 1
3+···+ 1

N1
> 2013.

If 1 + 1
3 + 1

5 + · · · + 1
N1−2 + 1

N1
− 1

2 > 2013, then 1 + 1
3 + 1

5 + · · · + 1
N1−2 > 2013 as

1
N1

− 1
2 < 0 which is a contradiction.

(b) Similar to (a).

(c) From (b), it follows that 1 + 1
3 +

1
5 + ...+ 1

N1
− 1

2 +
1

N1+2 + · · ·+ 1
N2−2 ≤ 2013. That is

1 + 1
3 +

1
5 + · · ·+ 1

N1
− 1

2 +
1

N1+2 + ...+ 1
N2−2 +

1
N2

≤ 2013 + 1
N2

. This implies the first
inequality of (c).

From the first inequality of (b), 1+ 1
3+

1
5+ · · ·+ 1

N1
− 1

2+
1

N1+2+ · · ·+ 1
N2

− 1
4 > 2013− 1

4 .
This implies the second inequality of (c).

(d) The proof of the first part is similar to the proof of the first part of (c). The second
part follows from the second part of (c).

(e) Observe from (c) and (d) that the sequence of partial sums of the series of rearrange-
ment converges to 2013.

14. (a) Use the fact that an = An −An−1.

(b) Since (An) is a bounded sequence, let |An| ≤ M for all n ∈ N and for some M .
Therefore |A1(

1
1 − 1

2)|+ |A2(
1
2 − 1

3)|+ · · ·+ |An(
1
n − 1

n+1)| ≤ M(1− 1
n+1) < M.



(c) From (b), the sequence of partial sums of the series A1(
1
1−

1
2)+A2(

1
2−

1
3)+··· converges.

Therefore (Sn) converges.

15. (a) Compare the Dirichlet Test with Practice Problems 12. Repeat the steps (a)-(c) given
in the problem mentioned above by taking bn in place of 1

n .

(b) Compare Abel’s Test with Practice Problems 12. Repeat the steps (a)-(c) given in
the problem mentioned above by taking bn in place of 1

n . In Abel’s test (bn) could be
increasing. However, the proofs of the steps (a)-(c) go through.

(c) Convergence of the first series follows from the Dirichlet test. For the divergence of the
second series, consider the sequence of partial sums (for instance, S3 ≥ 1

3 , S6 ≥ 1
3 +

1
6 ,

S9 ≥ 1
3 + 1

6 + 1
9 ,...).

(d) Apply Abel’s test.


