
Practice Problems 15: Power Series, Taylor’s Series

1. For a given
∑∞

n=0 anx
n, let

K =

{
|x| : x ∈ R and

∞∑
n=0

anx
n is convergent

}

be bounded. If r = supK, then
∑∞

n=0 anx
n

(a) converges absolutely for all x ∈ R with |x| < r,

(b) diverges for all x ∈ R with |x| > r.

2. In each of the following cases, determine the values of x for which the power series converges.

(a)
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n=0
2nxn

nn (b)
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n=0
(n!)2xn

(2n)! (c)
∑∞

n=0(−1)nn2nxn

(d)
∑∞

n=0
(x−2)n+1

n3n (e)
∑∞

n=0(−1)n 10n

n! (x− 10)n (f)
∑∞

n=2
xn

n(ln n)2

3. (a) Let (Sn) be the sequence of partial sums of the Maclaurin series of ln(1 + x). Show
that if 0 ≤ x ≤ 1, then Sn → ln(1 + x), i.e, the Maclaurin series of ln(1 + x) converges
to ln(1 + x) on [0, 1].

(b) For each x ∈ [0, 1], ln(1 + x) = x− x2

2 + x3

3 − x4

4 + · · ·.
(c) Show that ln 2 = 1− 1

2 + 1
3 − 1

4 + · · ·.

4. Let f : (a, b) → R be infinitely differentiable and x0 ∈ (a, b). Suppose that there exists
M > 0 such that |fn(x)| ≤ Mn for all n ∈ N and x ∈ (a, b). Show that Taylor’s series of f
at x0 converges to f(x) for all x ∈ (a, b).

5. Let f(x) = e−
1
x2 when x 6= 0 and f(0) = 0. Show that

(a) f ′(0) = 0;

(b) for x 6= 0, n ≥ 1 , f (n)(x) = Pn(
1
x)e

− 1
x2 where Pn is a polynomial of degree 3n;

(c) f (n)(0) = 0 for n = 1, 2, ....;

(d) the Maclaurin series of f converges to f(x) only when x = 0.

6. (*) Let (Sn) be the sequence of partial sums of the Maclaurin series of ln(1 + x). Show
that if −1 < x ≤ 0, then Sn → ln(1 + x) i.e, the Maclaurin series of ln(1 + x) converges to
ln(1 + x) on (−1, 0].

7. (*)(Binomial series) Let k ∈ R and f : (−1, 1) → R be defined by f(x) = (1 + x)k.

Denote k(k−1)···(k−n+1)
n! by

(
k
n

)
.

(a) Show that the Maclaurin series of f is 1+
∑∞

n=1

(
k
n

)
xn which is known as the binomial

series.

(b) If k ∈ N ∪ {0}, show that f(x) = 1 +
∑k

n=0

(
k
n

)
xn.

(c) If k /∈ N ∪ {0}, show that f(x) = 1 +
∑∞

n=1

(
k
n

)
xn for all x ∈ (−1, 1).

(d) Obtain from (b) that 1
1+x =

∑∞
n=0(−1)nxn and 1

1−x =
∑∞

n=0 x
n for x ∈ (−1, 1).

Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.



8. (*) Let an ≥ 0 for all n ∈ N and (a
1
n
n ) be a bounded sequence. For each n, define

An = sup{a
1
k
k : k ≥ n}

. Since (An) is bounded and decreasing, let An → ` for some ` > 0.

(a) If ` < 1, the series
∑∞

n=1 an converges and if ` > 1, the series diverges.

(b) The radius of convergence of the power series
∑∞

n=1 anx
n is 1

`

(c) Find the radius of convergence of the power series

1

2
x+

1

3
x2 +

1

22
x3 +

1

32
x4 +

1

23
x5 +
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1

24
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1

34
x8 + ...

Practice Problems 15: Hints/Solutions

1. (a) If |x| < r, then by the definition of supremum there exists |x0| ∈ K such that |x| < |x0|.
Since

∑∞
n=0 anx

n
0 converges, by Theorem 15.1,

∑∞
n=0 anx

n converges absolutely.

(b) Suppose |x| > r. By the definition of K,
∑∞

n=0 anx
n diverges.

2. (a) Since |2nxn

nn |
1
n → 0, by the root test the series converges for all x ∈ R.

(b) In this case |an+1xn+1

anxn | → |x4 | and
an+14n+1

an4n
= (n+1)

(n+ 1
2
)
> 1. The series converges only for

|x| < 4 as (an4
n) increases and an4

n 9 0.

(c) Use Ratio test . The series converges only for |x| < 1
2 .

(d) Use Ratio test. The series converges for |x − 2| < 3, and hence for −1 < x < 5. At
x = 5 the series diverges and x = −1 the series converges.

(e) Since |an+1

an
(x− 10)| → 0, the series converges for all x ∈ R.

(f) Apply the Ratio test. The series converges only if x ∈ [−1, 1].

3. (a) Observe that if f(x) = ln(1+x), x ∈ [0, 1], then f (k)(x) = (−1)k−1 (k−1)!
(1+x)k

for all k ∈ N.

By Taylor’s theorem, ln(1 + x) = Sn + (−1)n

n+1
xn+1

(1+c)n+1 for some c ∈ (0, x). This implies

that | ln(1 + x)− Sn| = | (−1)n

n+1
xn+1

(1+c)n+1 | ≤ |xn+1

n+1 | → 0.

(b) Follows from (a).

(c) Take x = 1 in (b).

4. Note that for x ∈ (a, b), |En(x)| = |f
n+1(c)
(n+1)! ||x − x0|n+1 for some c between x and x0. This

implies that |En(x)| ≤ An+1

(n+1)! where A = M |x − x0|. It follows from the ratio test for

sequences that An+1

(n+1)! → 0. This shows that Taylor’s series of f converges to f(x).

5. (a) Note that limx→0+
f(x)−f(0)

x = limx→0+
e
− 1

x2

x = limx→0+
1
x

e
1
x2

= limy→∞
y

ey2
= 0, by

L’Hospital Rule.

(b) If f (n)(x) = Pn(
1
x)e

− 1
x2 , then

f (n+1)(x) =

{
P ′
n(

1

x
)(− 1

x2
) + Pn(

1

x
)(

2

x3
)

}
e−

1
x2 = Pn+1(

1

x
)e−

1
x2

where Pn+1(t) = −t2P ′
n(t) + 2t3Pn(t) which is of degree 3n + 3 if Pn is of degree 3n.

Use the induction argument.



(c) If fn−1(0) = 0 then, as done in (a), limx→0+
f (n−1)(x)−f (n−1)(0)

x = limy→∞
yPn−1(y)

ey2
= 0,

i.e., fn(0) = 0.

(d) Trivial.

6. We use Taylor’s theorem with Cauchy remainder (see Problem 15 of PP9). If f(x) =
ln(1+x), x ∈ (−1, 0], then by Taylor’s theorem with Cauchy reminder, there exists c ∈ (x, 0)
such that

|f(x)− Sn| =
∣∣∣∣(x− c)nx

n!
f (n+1)(c)

∣∣∣∣ = ∣∣∣∣ (x− c)nx

(1 + c)n+1

∣∣∣∣ = ∣∣∣∣x− c

1 + c

∣∣∣∣n |x|
1 + c

≤
∣∣∣∣x− c

1 + c

∣∣∣∣n |x|
1 + x

.

Let c = θx for some 0 < θ < 1. Note that θ depends on n. Now

|f(x)− Sn| ≤
(

1− θ

1 + θx

)n ∣∣∣∣ xn+1

1 + x

∣∣∣∣ .
Since 1−θ

1+θx ∈ (0, 1), |f(x)− Sn| ≤
∣∣∣xn+1

1+x

∣∣∣. Hence |f(x)− Sn| → 0.

7. (a) Since f (n)(x) = k(k− 1) · · · (k−n+1)(1+x)k−n, the Maclaurin series of f is 1+ kx+
k(k−1)

2! x2 + k(k−1)(k−2)
3! x3 + · · ·.

(b) This follows from the fact that f (n)(0) = 0 for all n > k + 1.

(c) The solution is similar to that of Problem 6. We use Taylor’s theorem with Cauchy
remainder (see Problem 15 of PP9). Let x ∈ (−1, 1). Observe that∣∣∣∣(x− c)nx

n!
fn+1(c)

∣∣∣∣ =

∣∣∣∣(x− c)nx

n!
k(k − 1) · · · (k − n)(1 + c)k−n−1

∣∣∣∣ .
Let c = θx for some 0 < θ < 1. Note that θ depends on n. Now,∣∣∣∣(x− c)nx

n!
fn+1(c)

∣∣∣∣ =

∣∣∣∣( 1− θ

1 + θx

)n

xn+1(1 + θx)k−1k(k − 1) · · · (k − n)

n!

∣∣∣∣ .
Observe that 1−θ

1+θx ∈ (0, 1). Further, (1+θx)k−1 ≤ (1+|x|)k−1 if k > 1 and (1+θx)k−1 ≤
(1− |x|)k−1 if k < 1. Therefore,∣∣∣∣(x− c)nx

n!
fn+1(c)

∣∣∣∣ ≤ (1± |x|)k−1

∣∣∣∣xn+1k(k − 1) · · · (k − n)

n!

∣∣∣∣
By the ratio test for sequences,

∣∣∣xn+1 k(k−1)...(k−n)
n!

∣∣∣ → 0.

(d) Take k = −1 for the first part. Replace x by −x for the second part.

8. (a) If ` < 1, then find ε > 0 such that ` < ` + ε < 1. Since An → `, there exists N ∈ N
such that An < ` + ε for all n ≥ N . That is a

1
n
n < ` + ε < 1 for all n ≥ N . Therefore

by Theorem 14.3, the series
∑∞

n=1 an converges.

If ` > 1, choose ε > 0 such that ` − ε > 1. Since An → `, there exists a subsequence

(a
1
nk
nk ) of (a

1
n
n ) such that a

1
nk
nk ≥ ` − ε > 1. Hence a

1
n
n 9 0 and therefore

∑∞
n=1 an

diverges.

(b) Follows from the proof of (a) (Repeat the proof of (a) by replacing an by anx
n).

(c) See Problem 8 of PP14. In this case ` = 1√
2
and hence 1

` =
√
2 is the radius of

convergence.


