Practice Problems 17: Integration, Riemann's Criterion for integrability (Part II)

- 1. Let $f:[a,b] \to \mathbb{R}$ be integrable and $[c,d] \subset [a,b]$. Show that f is integrable on [c,d].
- 2. (a) Let f be bounded on [a, b], $M = \sup\{f(x) : x \in [a, b]\}$, $M' = \sup\{|f(x)| : x \in [a, b]\}$, $m = \inf\{f(x) : x \in [a, b]\}$ and $m' = \inf\{|f(x)| : x \in [a, b]\}$. Show that $M' m' \leq M m$.
 - (b) Let $f : [a, b] \to \mathbb{R}$ be integrable. Show that |f| and f^2 are integrable.
- 3. (a) Find f: [0,1] → R such that |f| is integrable but f is not integrable.
 (b) Find f: [0,1] → R such that f² is integrable but f is not integrable.
- 4. Let f and g be two integrable functions on [a, b].
 - (a) If $f(x) \leq g(x)$ for all $x \in [a, b]$, show that $\int_a^b f(x) dx \leq \int_a^b g(x) dx$.
 - (b) Show that $\left|\int_{a}^{b} f(x)dx\right| \leq \int_{a}^{b} |f(x)|dx.$
 - (c) If $m \leq f(x) \leq M$ for all $x \in [a,b]$ show that $m(b-a) \leq \int_a^b f(x)dx \leq M(b-a)$. Use this inequality to show that $\frac{\sqrt{3}}{8} \leq \int_{\pi/4}^{\pi/3} \frac{\sin x}{x}dx \leq \frac{\sqrt{2}}{6}$.
- 5. Let $f : [a, b] \to \mathbb{R}$ and $f(x) \ge 0$ for all $x \in [a, b]$
 - (a) If f is integrable, show that $\int_a^b f(x) dx \ge 0$.
 - (b) If f continuous and $\int_a^b f(x)dx = 0$ show that f(x) = 0 for all $x \in [a, b]$.
 - (c) Give an example of an integrable function f on [a, b] such that $f(x) \ge 0$ for all $x \in [a, b]$ and $\int_a^b f(x) dx = 0$ but $f(x_0) \ne 0$ for some $x_0 \in [a, b]$.
- 6. Let $f:[0,1] \to \mathbb{R}$ be a bounded function. Suppose that for any $c \in (0,1]$, f is integrable on [c,1].
 - (a) Show that f is integrable on [0, 1].
 - (b) Show that the function f defined by f(0) = 0 and $f(x) = \sin(\frac{1}{x})$ on (0, 1] is integrable,
- 7. Let $f : [a,b] \to \mathbb{R}$ be a continuous function. Suppose that whenever the product fg is integrable on [a,b] for some integrable function g, we have $\int_a^b (fg)(x)dx = 0$. Show that f(x) = 0 for every $x \in [a,b]$.
- 8. (a) Let $x, y \ge 0$. Show that $\lim_{n \to \infty} (x^n + y^n)^{\frac{1}{n}} = M$ where $M = \max\{x, y\}$.
 - (b) Let $f: [a,b] \to \mathbb{R}$ be continuous and $f(x) \ge 0$ for all $x \in [a,b]$. Show that $\lim_{n\to\infty} \left(\int_a^b f(x)^n\right)^{\frac{1}{n}} = M$ where $M = \sup\{f(x) : x \in [a,b]\}.$
- 9. (a) (*) (Cauchy-Schwarz inequality) Let $x_1, x_2, ..., x_n, y_1, y_2, ..., y_n \in \mathbb{R}$. By observing that $\sum_{i=1}^n (tx_i y_i)^2 \ge 0$ for any $t \in \mathbb{R}$, show that $|\sum_{i=1}^n x_i y_i| \le (\sum_{i=1}^n x_i^2)^{\frac{1}{2}} (\sum_{i=1}^n y_i^2)^{\frac{1}{2}}$.
 - (b) (*) (Cauchy-Schwarz inequality) Let f and g be any two integrable functions on [a, b]. Show that $\left(\int_a^b f(x)g(x)dx\right)^2 \leq \left(\int_a^b |f(x)|^2 dx\right) \left(\int_a^b |g(x)|^2 dx\right)$.
- 10. (*) Let $f : [a, b] \to \mathbb{R}$ be integrable. Suppose that the values of f are changed at a finite number of points. Show that the modified function is integrable.
- 11. (*) Let f : [a, b] be a bounded function and $E \subset [a, b]$. Suppose that E can be covered by a finite number of closed intervals whose total length can be made as small as desired. If f is continuous at every point outside E, show that f is integrable.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.

Practice Problems 17: Hints/Solutions

- 1. Let $\epsilon > 0$. Since f is integrable on [a, b], there exists a partition $P = \{x_0, x_1, x_2, ..., x_n\}$ (of [a,b]) such that $U(P, f) - L(P, f) < \epsilon$. Let $P_1 = P \cup \{c, d\}$ and $P' = P_1 \cap [c, d]$ which is a partition of [c, d]. Then, since $M_i - m_i > 0$, it follows that $U(P', f) - L(P', f) \le U(P_1, f) - L(P_1, f) \le U(P, f) - L(P, f) < \epsilon$. Apply the Riemann Criterion.
- 2. (a) Let $x, y \in [c, d]$. Then $|f(x)| |f(y)| \le |f(x) f(y)| \le M m$. Fix y and take supremum for x, we get $M' |f(y)| \le M m$. Take infimum for y.
 - (b) To show that |f| is integrable, use the Riemann Criterion and (a). For showing f^2 is integrable, use the inequality $(f(x))^2 - (f(y))^2 \le 2K|f(x) - f(y)|$ where $K = \sup\{|f(x)| : x \in [a, b]\}$ and proceed as in (a).
- 3. Let $f : [0,1] \to \mathbb{R}$ be defined by f(x) = -1 for x rational and f(x) = 1 for x irrational. Then $|f| = f^2$. Note that f is not integrable but |f| is a constant function.
- 4. (a) Use $\int_a^b g(x)dx \int_a^b f(x)dx = \int_a^b (g-f)(x)dx$ and Problem 3 of Practice Problems 16 (b) Since $-|f(x)| \le f(x) \le |f(x)|, x \in [a,b]$, (b) follows from part (a).
 - (c) Use part (a) or $L(P, f) \leq \int_a^b f(x) dx \leq U(P, f)$. On $[\frac{\pi}{4}, \frac{\pi}{3}], \frac{\sin x}{x}$ decreases.
- 5. (a) This follows from the definition of integrability of f or from Problem 4(a).
 - (b) Let $x_0 \in (a, b)$ be such that $f(x_0) > \alpha$ for some $\alpha > 0$. Then by the continuity of f there exists a $\delta > 0$ such that $(x_0 \delta, x_0 + \delta) \subseteq (a, b)$ and $f(x) > \alpha$ on $(x_0 \delta, x_0 + \delta)$. Then we can find a partition P of [a, b] such that $\int_a^b f(x) dx \ge L(P, f) > \alpha \times \delta > 0$.
 - (c) Let f(a) = 1 and f(x) = 0 for all $x \in (a, b]$. Then $\int_a^b f(x) dx = 0$ but $f(a) \neq 0$.
- 6. (a) Let $M = \sup\{|f(x)| : x \in [0,1]\}$. If $P_n = \{\frac{1}{n}, x_1, x_2, ..., x_n\}$ is a partition of $[\frac{1}{n}, 1]$ then let $P'_n = \{0, \frac{1}{n}, x_1, x_2, ..., x_n\}$ be a corresponding partition of [0,1]. Then $U(P'_n, f) \leq \frac{M}{n} + U(P_n, f)$ and $L(P'_n, f) \geq -\frac{M}{n} + L(P_n, f)$. Therefore, $U(P'_n, f) L(P'_n, f) \leq \frac{2M}{n} + U(P_n, f) L(P_n, f)$. For $\epsilon > 0$, first choose n such that $\frac{2M}{n} < \frac{\epsilon}{2}$ and then choose P_n such that $U(P_n, f) L(P_n, f) < \frac{\epsilon}{2}$. Apply the Riemann Criterion.
 - (b) Since f is continuous on [c, 1] for every c satisfying 0 < c < 1, f is integrable on [c, 1]. Apply part (a).
- 7. Suppose $f(x_0) > 0$ for some $x_0 \in (a, b)$. Then $f^2(x_0) > 0$. By the argument used in Problem 5(b), $\int_a^b f^2(x) dx > 0$. Choose g = f to conclude.
- 8. (a) Note that $M \leq (x^n + y^n)^{\frac{1}{n}} \leq (2M^n)^{\frac{1}{n}}$. Use the Sandwich Theorem.
 - (b) For $\epsilon > 0$, by the continuity of f, $\exists [c,d] \subseteq [a,b]$ such that $f(x) > M \epsilon \quad \forall x \in [c,d]$. Hence $(M-\epsilon)(d-c)^{\frac{1}{n}} \leq \left(\int_a^b f(x)^n\right)^{\frac{1}{n}} \leq M(b-a)^{\frac{1}{n}}$. Note that $M(b-a)^{\frac{1}{n}} \to M$ and $(M-\epsilon)(d-c)^{\frac{1}{n}} \to M - \epsilon$. Hence there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $M - 2\epsilon \leq (M-\epsilon)(d-c)^{\frac{1}{n}} \leq \left(\int_a^b f(x)^n\right)^{\frac{1}{n}} \leq M(b-a)^{\frac{1}{n}} \leq M + \epsilon$.
- 9. We will see the solution of part (b) and the solution of part (a) is similar. Note that the inequality $\int_a^b (tf(x) g(x))^2 = t^2 \left(\int_a^b f^2(x) dx \right) 2t \left(\int_a^b f(x)g(x) dx \right) + \left(\int_a^b g^2(x) dx \right) \ge 0$ holds for all $t \in \mathbb{R}$. Take $t = \frac{\alpha}{\beta}$ where $\alpha = \int_a^b f(x)g(x)dx$ and $\beta = \int_a^b f^2(x)dx$.

- 10. Suppose the values of f are changed at $c_1, c_2, ..., c_p$ and g is the modified function. Let $M = \max\{|g(c_1)|, |g(c_2)|, ..., |g(c_p)|\}$. Let $\epsilon > 0$. Since f is integrable, there exists a partition P of [a, b] such that $U(P, f) L(P, f) < \frac{\epsilon}{2}$. Cover $c'_i s$ by the disjoint intervals $[y_1, y_2], [y_3, y_4], ..., [y_{2p-1}, y_{2p}]$ where $y'_i s$ are in [a, b] and $|y_1 y_2| + |y_3 y_4| + ... + |y_{2p-1} y_{2p}| < \frac{\epsilon}{4pM}$. Consider the partition $P_1 = P \cup \{y_1, y_2, ..., y_{2p}\}$. Then $U(P_1, g) L(P_1, g) \leq U(P_1, f) L(P_1, f) + \frac{2pM\epsilon}{4pM} < U(P, f) L(P, f) + \frac{\epsilon}{2} \leq \epsilon$. Apply the Riemann Criterion.
- 11. Proceed as in Theorem 17.2 and Problem 10.