1. Let $f:[a, b] \rightarrow \mathbb{R}$ be integrable and $[c, d] \subset[a, b]$. Show that f is integrable on $[c, d]$.
2. (a) Let f be bounded on $[a, b], M=\sup \{f(x): x \in[a, b]\}, M^{\prime}=\sup \{|f(x)|: x \in[a, b]\}$, $m=\inf \{f(x): x \in[a, b]\}$ and $m^{\prime}=\inf \{|f(x)|: x \in[a, b]\}$. Show that $M^{\prime}-m^{\prime} \leq$ $M-m$.
(b) Let $f:[a, b] \rightarrow \mathbb{R}$ be integrable. Show that $|f|$ and f^{2} are integrable.
3. (a) Find $f:[0,1] \rightarrow \mathbb{R}$ such that $|f|$ is integrable but f is not integrable.
(b) Find $f:[0,1] \rightarrow \mathbb{R}$ such that f^{2} is integrable but f is not integrable.
4. Let f and g be two integrable functions on $[a, b]$.
(a) If $f(x) \leq g(x)$ for all $x \in[a, b]$, show that $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$.
(b) Show that $\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x$.
(c) If $m \leq f(x) \leq M$ for all $x \in[a, b]$ show that $m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)$. Use this inequality to show that $\frac{\sqrt{3}}{8} \leq \int_{\pi / 4}^{\pi / 3} \frac{\sin x}{x} d x \leq \frac{\sqrt{2}}{6}$.
5. Let $f:[a, b] \rightarrow \mathbb{R}$ and $f(x) \geq 0$ for all $x \in[a, b]$
(a) If f is integrable, show that $\int_{a}^{b} f(x) d x \geq 0$.
(b) If f continuous and $\int_{a}^{b} f(x) d x=0$ show that $f(x)=0$ for all $x \in[a, b]$.
(c) Give an example of an integrable function f on $[a, b]$ such that $f(x) \geq 0$ for all $x \in[a, b]$ and $\int_{a}^{b} f(x) d x=0$ but $f\left(x_{0}\right) \neq 0$ for some $x_{0} \in[a, b]$.
6. Let $f:[0,1] \rightarrow \mathbb{R}$ be a bounded function. Suppose that for any $c \in(0,1], f$ is integrable on $[c, 1]$.
(a) Show that f is integrable on $[0,1]$.
(b) Show that the function f defined by $f(0)=0$ and $f(x)=\sin \left(\frac{1}{x}\right)$ on $(0,1]$ is integrable,
7. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Suppose that whenever the product $f g$ is integrable on $[a, b]$ for some integrable function g, we have $\int_{a}^{b}(f g)(x) d x=0$. Show that $f(x)=0$ for every $x \in[a, b]$.
8. (a) Let $x, y \geq 0$. Show that $\lim _{n \rightarrow \infty}\left(x^{n}+y^{n}\right)^{\frac{1}{n}}=M$ where $M=\max \{x, y\}$.
(b) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and $f(x) \geq 0$ for all $x \in[a, b]$. Show that $\lim _{n \rightarrow \infty}\left(\int_{a}^{b} f(x)^{n}\right)^{\frac{1}{n}}=M$ where $M=\sup \{f(x): x \in[a, b]\}$.
9. (a) (*) (Cauchy-Schwarz inequality) Let $x_{1}, x_{2}, \ldots x_{n}, y_{1}, y_{2}, \ldots, y_{n} \in \mathbb{R}$. By observing that $\sum_{i=1}^{n}\left(t x_{i}-y_{i}\right)^{2} \geq 0$ for any $t \in \mathbb{R}$, show that $\left|\sum_{i=1}^{n} x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}\left(\sum_{i=1}^{n} y_{i}^{2}\right)^{\frac{1}{2}}$.
(b) (*) (Cauchy-Schwarz inequality) Let f and g be any two integrable functions on $[a, b]$. Show that $\left(\int_{a}^{b} f(x) g(x) d x\right)^{2} \leq\left(\int_{a}^{b}|f(x)|^{2} d x\right)\left(\int_{a}^{b}|g(x)|^{2} d x\right)$.
10. (*) Let $f:[a, b] \rightarrow \mathbb{R}$ be integrable. Suppose that the values of f are changed at a finite number of points. Show that the modified function is integrable.
11. $\left(^{*}\right)$ Let $f:[a, b]$ be a bounded function and $E \subset[a, b]$. Suppose that E can be covered by a finite number of closed intervals whose total length can be made as small as desired. If f is continuous at every point outside E, show that f is integrable.
12. Let $\epsilon>0$. Since f is integrable on $[a, b]$, there exists a partition $P=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}$ (of [a,b]) such that $U(P, f)-L(P, f)<\epsilon$. Let $P_{1}=P \cup\{c, d\}$ and $P^{\prime}=P_{1} \cap[c, d]$ which is a partition of $[c, d]$. Then, since $M_{i}-m_{i}>0$, it follows that $U\left(P^{\prime}, f\right)-L\left(P^{\prime}, f\right) \leq$ $U\left(P_{1}, f\right)-L\left(P_{1}, f\right) \leq U(P, f)-L(P, f)<\epsilon$. Apply the Riemann Criterion.
13. (a) Let $x, y \in[c, d]$. Then $|f(x)|-|f(y)| \leq|f(x)-f(y)| \leq M-m$. Fix y and take supremum for x, we get $M^{\prime}-|f(y)| \leq M-m$. Take infimum for y.
(b) To show that $|f|$ is integrable, use the Riemann Criterion and (a).

For showing f^{2} is integrable, use the inequality $(f(x))^{2}-(f(y))^{2} \leq 2 K|f(x)-f(y)|$ where $K=\sup \{|f(x)|: x \in[a, b]\}$ and proceed as in (a).
3. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by $f(x)=-1$ for x rational and $f(x)=1$ for x irrational. Then $|f|=f^{2}$. Note that f is not integrable but $|f|$ is a constant function.
4. (a) Use $\int_{a}^{b} g(x) d x-\int_{a}^{b} f(x) d x=\int_{a}^{b}(g-f)(x) d x$ and Problem 3 of Practice Problems 16
(b) Since $-|f(x)| \leq f(x) \leq|f(x)|, x \in[a, b]$, (b) follows from part (a).
(c) Use part (a) or $L(P, f) \leq \int_{a}^{b} f(x) d x \leq U(P, f)$. On $\left[\frac{\pi}{4}, \frac{\pi}{3}\right], \frac{\sin x}{x}$ decreases.
5. (a) This follows from the definition of integrability of f or from Problem 4(a).
(b) Let $x_{0} \in(a, b)$ be such that $f\left(x_{0}\right)>\alpha$ for some $\alpha>0$. Then by the continuity of f there exists a $\delta>0$ such that $\left(x_{0}-\delta, x_{0}+\delta\right) \subseteq(a, b)$ and $f(x)>\alpha$ on $\left(x_{0}-\delta, x_{0}+\delta\right)$. Then we can find a partition P of $[a, b]$ such that $\int_{a}^{b} f(x) d x \geq L(P, f)>\alpha \times \delta>0$.
(c) Let $f(a)=1$ and $f(x)=0$ for all $x \in(a, b]$. Then $\int_{a}^{b} f(x) d x=0$ but $f(a) \neq 0$.
6. (a) Let $M=\sup \{|f(x)|: x \in[0,1]\}$. If $P_{n}=\left\{\frac{1}{n}, x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a partition of $\left[\frac{1}{n}, 1\right]$ then let $P_{n}^{\prime}=\left\{0, \frac{1}{n}, x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a corresponding partition of $[0,1]$. Then $U\left(P_{n}^{\prime}, f\right) \leq$ $\frac{M}{n}+U\left(P_{n}, f\right)$ and $L\left(P_{n}^{\prime}, f\right) \geq-\frac{M}{n}+L\left(P_{n}, f\right)$. Therefore, $U\left(P_{n}^{\prime}, f\right)-L\left(P_{n}^{\prime}, f\right) \leq$ $\frac{2^{n}}{n}+U\left(P_{n}, f\right)-L\left(P_{n}, f\right)$. For $\epsilon>0$, first choose n such that $\frac{2 M}{n}<\frac{\epsilon}{2}$ and then choose P_{n} such that $U\left(P_{n}, f\right)-L\left(P_{n}, f\right)<\frac{\epsilon}{2}$. Apply the Riemann Criterion.
(b) Since f is continuous on $[c, 1]$ for every c satisfying $0<c<1, f$ is integrable on $[c, 1]$. Apply part (a).
7. Suppose $f\left(x_{0}\right)>0$ for some $x_{0} \in(a, b)$. Then $f^{2}\left(x_{0}\right)>0$. By the argument used in Problem $5(\mathrm{~b}), \int_{a}^{b} f^{2}(x) d x>0$. Choose $g=f$ to conclude.
8. (a) Note that $M \leq\left(x^{n}+y^{n}\right)^{\frac{1}{n}} \leq\left(2 M^{n}\right)^{\frac{1}{n}}$. Use the Sandwich Theorem.
(b) For $\epsilon>0$, by the continuity of $f, \exists[c, d] \subseteq[a, b]$ such that $f(x)>M-\epsilon \forall x \in[c, d]$. Hence $(M-\epsilon)(d-c)^{\frac{1}{n}} \leq\left(\int_{a}^{b} f(x)^{n}\right)^{\frac{1}{n}} \leq M(b-a)^{\frac{1}{n}}$. Note that $M(b-a)^{\frac{1}{n}} \rightarrow M$ and $(M-\epsilon)(d-c)^{\frac{1}{n}} \rightarrow M-\epsilon$. Hence there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $M-2 \epsilon \leq(M-\epsilon)(d-c)^{\frac{1}{n}} \leq\left(\int_{a}^{b} f(x)^{n}\right)^{\frac{1}{n}} \leq M(b-a)^{\frac{1}{n}} \leq M+\epsilon$.
9. We will see the solution of part (b) and the solution of part (a) is similar. Note that the inequality $\int_{a}^{b}(t f(x)-g(x))^{2}=t^{2}\left(\int_{a}^{b} f^{2}(x) d x\right)-2 t\left(\int_{a}^{b} f(x) g(x) d x\right)+\left(\int_{a}^{b} g^{2}(x) d x\right) \geq 0$ holds for all $t \in \mathbb{R}$. Take $t=\frac{\alpha}{\beta}$ where $\alpha=\int_{a}^{b} f(x) g(x) d x$ and $\beta=\int_{a}^{b} f^{2}(x) d x$.
10. Suppose the values of f are changed at $c_{1}, c_{2}, . ., c_{p}$ and g is the modified function. Let $M=\max \left\{\left|g\left(c_{1}\right)\right|,\left|g\left(c_{2}\right)\right|, \ldots,\left|g\left(c_{p}\right)\right|\right\}$. Let $\epsilon>0$. Since f is integrable, there exists a partition P of $[a, b]$ such that $U(P, f)-L(P, f)<\frac{\epsilon}{2}$. Cover $c_{i}^{\prime} s$ by the disjoint intervals $\left[y_{1}, y_{2}\right],\left[y_{3}, y_{4}\right], \ldots,\left[y_{2 p-1}, y_{2 p}\right]$ where $y_{i}^{\prime} s$ are in $[a, b]$ and $\left|y_{1}-y_{2}\right|+\left|y_{3}-y_{4}\right|+\ldots+\mid y_{2 p-1}-$ $y_{2 p} \left\lvert\,<\frac{\epsilon}{4 p M}\right.$. Consider the partition $P_{1}=P \cup\left\{y_{1}, y_{2}, \ldots, y_{2 p}\right\}$. Then $U\left(P_{1}, g\right)-L\left(P_{1}, g\right) \leq$ $U\left(P_{1}, f\right)-L\left(P_{1}, f\right)+\frac{2 p M \epsilon}{4 p M}<U(P, f)-L(P, f)+\frac{\epsilon}{2} \leq \epsilon$. Apply the Riemann Criterion.
11. Proceed as in Theorem 17.2 and Problem 10.

