Practice Problems 18: Fundamental Theorems of Calculus, Riemann Sum

- 1. (a) Show that every continuous function on a closed bounded interval is a derivative.
 - (b) Show that an integrable function on a closed bounded interval need not be a derivative.
- 2. (a) Let $f: [-1,1] \to \mathbb{R}$ be defined by f(x) = 0 for $-1 \le x < 0$ and f(x) = 1 for $0 \le x \le 1$. Define $F(x) = \int_{-1}^{x} f(t) dt$.
 - i. Sketch the graphs of f and F and observe that f is not continuous; however, F is continuous.
 - ii. Observe that F is not differentiable at 0.
 - (b) Give an example of a function f on [-1, 1] such that f is not continuous at 0 but F(x) defined by $F(x) = \int_{-1}^{x} f(t) dt$ is differentiable at 0.
- 3. Let $f:[a,b] \to \mathbb{R}$ be integrable. Show that $\int_a^b f(t)dt = \lim_{x \to b} \int_a^x f(t)dt$.
- 4. Prove the second FTC by assuming the integrand to be continuous.
- 5. Let $f: [-1,1] \to \mathbb{R}$ be defined by $f(x) = 2x \sin \frac{1}{x^2} (\frac{2}{x}) \cos \frac{1}{x^2}$ for $x \neq 0$ and f(0) = 0. Show that F' = f where $F(x) = x^2 \sin \frac{1}{x^2}$ for $x \neq 0$ and F(0) = 0 but $\int_{-1}^1 F'(t) dt$ does not exist.
- 6. Let $f: [0,1] \to \mathbb{R}$ be continuous such that $|f(x)| \leq \int_0^x f(t)dt$ for all $x \in [0,1]$. Show that f(x) = 0 for all $x \in [0,1]$.
- 7. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Define $g(x) = \int_0^x (x-t)f(t)dt$ for all $x \in \mathbb{R}$. Show that g'' = f.
- 8. Let f be continuous on \mathbb{R} and $\alpha \neq 0$. If $g(x) = \frac{1}{\alpha} \int_0^x f(t) \sin[\alpha(x-t)] dt$, show that $f(x) = g''(x) + \alpha^2 g(x)$.
- 9. Let f be a differentiable function on [0,1]. Show that there exists $c \in (0,1)$ such that $\int_0^1 f(x)dx = f(0) + \frac{1}{2}f'(c)$.
- 10. Let $f: [0,1] \to \mathbb{R}$ be a continuous function such that $\int_0^1 f(x) dx = 1$. Show that there exists a point $c \in (0,1)$ such that $f(c) = 3c^2$.
- 11. Let $f: [0, \frac{\pi}{4}] \to \mathbb{R}$ be continuous. Show that $\exists c \in [0, \frac{\pi}{4}]$ such that $2 \cos 2c \int_0^{\pi/4} f(t) dt = f(c)$.
- 12. Let $f: [0,a] \to \mathbb{R}$ be such that f''(x) > 0 for every $x \in [0,a]$. Show that $\int_0^a f(x) dx \ge af(\frac{a}{2})$.
- 13. Let $f : [a,b] \to \mathbb{R}$ be continuous and $\int_a^x f(t)dt = \int_x^b f(t)dt$ for all $x \in [a,b]$. Show that f(x) = 0 for all $x \in [a,b]$.
- 14. Let $f, g : [a, b] \to \mathbb{R}$ be integrable functions. Suppose that f is increasing and g is non-negative on [a, b]. Show that there exists $c \in [a, b]$ such that $\int_a^b f(x)g(x)dx = f(b)\int_a^c g(x)dx + f(a)\int_c^b g(x)dx$.
- 15. Show that the MVT implies the first MVT for integrals: If $f : [a, b] \to \mathbb{R}$ is continuous then there exists $c \in (a, b)$ such that $\int_a^b f(t)dt = f(c)(b-a)$. Observe that the converse can be obtained for functions whose derivatives are continuous.
- 16. Show that $\int_{n}^{n+1} \frac{1}{x} dx < \frac{1}{n}$ for every $n \in \mathbb{N}$.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.

- 17. Let $f, g: [a, b] \to \mathbb{R}$ be continuous and $\int_a^b f(x) dx = \int_a^b g(x) dx$. Show that there exists $c \in [a, b]$ such that f(c) = g(c).
- 18. Show that $\frac{\pi^2}{9} \le \int_{\pi/6}^{\pi/2} \frac{x}{\sin x} \le \frac{2\pi^2}{9}$.
- 19. Let $f: [0,1] \to \mathbb{R}$ be an integrable function. Show that $\lim_{n\to\infty} \int_0^1 x^n f(x) dx = 0$.
- 20. Find $\lim_{n\to\infty} \sum_{k=1}^n \frac{1}{\sqrt{n^2+kn}}$
- 21. Show that $\lim_{n \to \infty} \frac{1}{n^3} \left[\sin \frac{\pi}{n} + 2^2 \sin \frac{2\pi}{n} + \dots + n^2 \sin \frac{n\pi}{n} \right] = \int_0^1 x^2 \sin(\pi x) dx.$
- 22. Show that $\lim_{n\to\infty} \frac{1}{n^{18}} \sum_{k=1}^n k^{16} = 0.$
- 23. (Integration by parts) Let $f, g : [a, b] \to \mathbb{R}$ be such that f' and g' are continuous on [a, b]. Show that $\int_a^b f(x)g'(x)dx = f(b)g(b) - f(a)g(a) - \int_a^b f'(x)g(x)dx$.
- 24. (*)(Integration by substitution) Let $\phi : [\alpha, \beta] \to \mathbb{R}$ be differentiable and ϕ' be continuous on $[\alpha, \beta]$. Suppose that $\phi([\alpha, \beta]) = [a, b]$ and $f : [a, b] \to \mathbb{R}$ is continuous. Then $\int_{\phi(\alpha)}^{\phi(\beta)} f(x) dx = \int_{\alpha}^{\beta} f(\phi(t)) \phi'(t) dt.$
- 25. (Leibniz Rule) Let f be a continuous function and u and v be differentiable functions on [a, b]. If the range of u and v are contained in [a, b], show that $\frac{d}{dx} \int_{u(x)}^{v(x)} f(t) dt = f(v(x)) \frac{dv}{dx} f(u(x)) \frac{du}{dx}$.
- 26. Let $f: [1,\infty) \to \mathbb{R}$ be defined by $f(x) = \int_1^x \frac{\ln t}{1+t} dt$. Solve the equation $f(x) + f(\frac{1}{x}) = 2$.

Practice Problems 18 : Hints/Solutions

- 1. (a) Follows immediately from the first FTC.
 - (b) Consider the function $f: [-1,1] \to \mathbb{R}$ defined by f(x) = -1 for $-1 \le x < 0$, f(0) = 0and f(x) = 1 for $0 < x \le 1$. Then f is integrable on [1,1]. Since f does not have the intermediate value property, it cannot be a derivative (see Problem 18(c) of Practice Problems 7).
- 2. (a) F(x) = 0 for $-1 \le x \le 0$ and F(x) = x for $0 < x \le 1$.
 - (b) Let $f: [-1,1] \to \mathbb{R}$ be defined by $f(\frac{1}{n}) = \frac{1}{n}$ for every $n \in N$ and f(x) = 0 otherwise. Then $F(x) = \int_{-1}^{x} f(t)dt = 0$ for all $x \in [-1,1]$ and hence F is differentiable at 0 but f is not continuous at 0.
- 3. Follows from the first FTC.
- 4. Let $f : [a, b] \to \mathbb{R}$ be continuous and f = F' for some F on [a, b]. Define $F_a(x) = \int_a^x f(t)dt$ on [a, b]. Then by the first FTC, $F = F_a + C$ for some constant C. Since $F_a(a) = 0$, C = F(a) and hence $F(b) - F(a) = \int_a^b f(t)dt$.
- 5. Observe that F' is not bounded.
- 6. Let $M = \sup\{|f(x)| : x \in [0,1]\}$. Then for $x \in [0,1], |f(x)| \le \int_0^x |f(t)| dt \le Mx$. Now, $|f(x)| \le \int_0^x |f(t)| dt \le \int_0^x Mt dt = M \frac{x^2}{2}$. Continue to show that $|f(x)| \le M \frac{x^n}{n!} \to 0$.
- 7. Write $g(x) = x \int_0^x f(t) dt \int_0^x tf(t) dt$ and apply the first FTC.
- 8. Write $g(x) = \frac{1}{\alpha} \left[\sin(\alpha x) \int_0^x f(t) \cos(\alpha t) dt \cos(\alpha x) \int_0^x f(t) \sin(\alpha t) dt \right]$ and apply the first FTC.

- 9. Let $F(x) = \int_0^x f(t) dt$. Apply the Extended MVT to F on [0, 1].
- 10. Consider the function $F(x) = \int_0^x f(t)dt x^3$ on [0, 1]. Apply Rolle's theorem.
- 11. Let $F(x) = \int_0^x f(t) dt$ and $G(x) = \sin 2x$. Apply the CMVT for F and G on $[0, \pi/4]$.
- 12. Let $x_0 \in (0, a)$. Then by Taylor's theorem, $f(x) \ge f(x_0) + f'(x_0)(x x_0)$. Then $\int_0^a f(x) dx \ge af(x_0) ax_0 f'(x_0) + \frac{a^2}{2} f'(x_0)$. Choose $x_0 = \frac{a}{2}$.
- 13. Let $F(x) = \int_a^x f(t)dt$. Then F'(x) = f(x). The given condition implies that F(x) = F(b) F(x). Therefore, F'(x) = 0 which implies that f(x) = 0.
- 14. Define $h(x) = f(b) \int_a^x g(x) dx + f(a) \int_x^b g(x) dx$ for all $x \in [a, b]$. Now $h(a) = f(a) \int_a^b g(x) dx \le \int_a^b f(x)g(x) dx \le f(b) \int_a^b g(x) dx = h(b)$. Apply the IVP.
- 15. Let $f : [a,b] \to \mathbb{R}$ be continuous. Define $F(x) = \int_a^x f(t)dt$. Then by the MVT, there $\exists c \in (a,b)$ such that F(b) F(a) = F'(c)(b-a). Apply the First FTC. Conversely, let $f : [a,b] \to \mathbb{R}$ be differentiable and f' be continuous. Then by the MVT for integrals, $\exists c \in (a,b)$ such that $\int_a^b f'(x)dx = f'(c)(b-a)$. This implies that f(b) f(a) = f'(c)(b-a).
- 16. Use the first MVT for integrals.
- 17. Use the first MVT for integrals.
- 18. Use the second MVT for integrals (See Problem 2 of Assignment 6).
- 19. Note that f is bounded on [0, 1]. Apply the second MVT for integrals.
- 20. $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + kn}} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\sqrt{1 + \frac{k}{n}}} \to \int_{0}^{1} \frac{dx}{\sqrt{1 + x}} = 2(\sqrt{2} 1).$
- 21. Note that $\frac{1}{n^3} \left[\sin \frac{\pi}{n} + 2^2 \sin \frac{2\pi}{n} + \dots + n^2 \sin \frac{n\pi}{n} \right] = \sum_{k=1}^n \frac{1}{n} (\frac{k}{n})^2 \sin \frac{k\pi}{n}$ which is a Riemann sum.
- 22. Note that $\frac{1}{n^{18}} \sum_{k=1}^{n} k^{16} = \frac{1}{n} \left[\frac{1}{n} \sum_{k=1}^{n} \left(\frac{k}{n} \right)^{16} \right]$ and $\frac{1}{n} \sum_{k=1}^{n} \left(\frac{k}{n} \right)^{16} \to \int_{0}^{1} x^{16} dx$.
- 23. Let h(x) = f(x)g(x). Then h' = f'g + fg'. Therefore $\int_a^b h'(x)dx = h(b) h(a)$.
- 24. Define $F(x) = \int_{\phi(\alpha)}^{x} f(u) du$. Therefore $\frac{d}{dt} F(\phi(t)) = F'(\phi(t))\phi'(t) = f(\phi(t))\phi'(t)$. Now $\int_{\alpha}^{\beta} f(\phi(t))\phi'(t) dt = [F(\phi(t))]_{\alpha}^{\beta} = F(\phi(\beta)).$
- 25. Note that $\frac{d}{dx} \int_{u(x)}^{v(x)} f(t) dt = \frac{d}{dx} \left[\int_0^{v(x)} f(t) dt \int_0^{u(x)} f(t) dt \right]$. Apply the first FTC.
- 26. Observe that $f(\frac{1}{x}) = \int_1^{1/x} \frac{\ln t}{1+t} dt = \int_1^x \frac{\ln y}{y(1+y)} dy$, by taking $t = \frac{1}{y}$. Therefore $f(x) + f(\frac{1}{x}) = \int_1^x \frac{\ln t}{1+t} (1+\frac{1}{t}) dt = \int_1^x \frac{\ln t}{t} dt = \frac{1}{2} (\ln x)^2$. Now $f(x) + f(\frac{1}{x}) = 2$ implies that $\ln x = \pm 2$ which implies that $x = e^2$ as x > 1.