1. (a) Show that every continuous function on a closed bounded interval is a derivative.
(b) Show that an integrable function on a closed bounded interval need not be a derivative.
2. (a) Let $f:[-1,1] \rightarrow \mathbb{R}$ be defined by $f(x)=0$ for $-1 \leq x<0$ and $f(x)=1$ for $0 \leq x \leq 1$. Define $F(x)=\int_{-1}^{x} f(t) d t$.
i. Sketch the graphs of f and F and observe that f is not continuous; however, F is continuous.
ii. Observe that F is not differentiable at 0 .
(b) Give an example of a function f on $[-1,1]$ such that f is not continuous at 0 but $F(x)$ defined by $F(x)=\int_{-1}^{x} f(t) d t$ is differentiable at 0 .
3. Let $f:[a, b] \rightarrow \mathbb{R}$ be integrable. Show that $\int_{a}^{b} f(t) d t=\lim _{x \rightarrow b} \int_{a}^{x} f(t) d t$.
4. Prove the second FTC by assuming the integrand to be continuous.
5. Let $f:[-1,1] \rightarrow \mathbb{R}$ be defined by $f(x)=2 x \sin \frac{1}{x^{2}}-\left(\frac{2}{x}\right) \cos \frac{1}{x^{2}}$ for $x \neq 0$ and $f(0)=0$. Show that $F^{\prime}=f$ where $F(x)=x^{2} \sin \frac{1}{x^{2}}$ for $x \neq 0$ and $F(0)=0$ but $\int_{-1}^{1} F^{\prime}(t) d t$ does not exist.
6. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous such that $|f(x)| \leq \int_{0}^{x} f(t) d t$ for all $x \in[0,1]$. Show that $f(x)=0$ for all $x \in[0,1]$.
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Define $g(x)=\int_{0}^{x}(x-t) f(t) d t$ for all $x \in \mathbb{R}$. Show that $g^{\prime \prime}=f$.
8. Let f be continuous on \mathbb{R} and $\alpha \neq 0$. If $g(x)=\frac{1}{\alpha} \int_{0}^{x} f(t) \sin [\alpha(x-t)] d t$, show that $f(x)=$ $g^{\prime \prime}(x)+\alpha^{2} g(x)$.
9. Let f be a differentiable function on $[0,1]$. Show that there exists $c \in(0,1)$ such that $\int_{0}^{1} f(x) d x=f(0)+\frac{1}{2} f^{\prime}(c)$.
10. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function such that $\int_{0}^{1} f(x) d x=1$. Show that there exists a point $c \in(0,1)$ such that $f(c)=3 c^{2}$.
11. Let $f:\left[0, \frac{\pi}{4}\right] \rightarrow \mathbb{R}$ be continuous. Show that $\exists c \in\left[0, \frac{\pi}{4}\right]$ such that $2 \cos 2 c \int_{0}^{\pi / 4} f(t) d t=f(c)$.
12. Let $f:[0, a] \rightarrow \mathbb{R}$ be such that $f^{\prime \prime}(x)>0$ for every $x \in[0, a]$. Show that $\int_{0}^{a} f(x) d x \geq a f\left(\frac{a}{2}\right)$.
13. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and $\int_{a}^{x} f(t) d t=\int_{x}^{b} f(t) d t$ for all $x \in[a, b]$. Show that $f(x)=0$ for all $x \in[a, b]$.
14. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be integrable functions. Suppose that f is increasing and g is nonnegative on $[a, b]$. Show that there exists $c \in[a, b]$ such that $\int_{a}^{b} f(x) g(x) d x=f(b) \int_{a}^{c} g(x) d x+$ $f(a) \int_{c}^{b} g(x) d x$.
15. Show that the MVT implies the first MVT for integrals: If $f:[a, b] \rightarrow \mathbb{R}$ is continuous then there exists $c \in(a, b)$ such that $\int_{a}^{b} f(t) d t=f(c)(b-a)$. Observe that the converse can be obtained for functions whose derivatives are continuous.
16. Show that $\int_{n}^{n+1} \frac{1}{x} d x<\frac{1}{n}$ for every $n \in \mathbb{N}$.

[^0]17. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous and $\int_{a}^{b} f(x) d x=\int_{a}^{b} g(x) d x$. Show that there exists $c \in[a, b]$ such that $f(c)=g(c)$.
18. Show that $\frac{\pi^{2}}{9} \leq \int_{\pi / 6}^{\pi / 2} \frac{x}{\sin x} \leq \frac{2 \pi^{2}}{9}$.
19. Let $f:[0,1] \rightarrow \mathbb{R}$ be an integrable function. Show that $\lim _{n \rightarrow \infty} \int_{0}^{1} x^{n} f(x) d x=0$.
20. Find $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{n^{2}+k n}}$.
21. Show that $\lim _{n \rightarrow \infty} \frac{1}{n^{3}}\left[\sin \frac{\pi}{n}+2^{2} \sin \frac{2 \pi}{n}+\ldots+n^{2} \sin \frac{n \pi}{n}\right]=\int_{0}^{1} x^{2} \sin (\pi x) d x$.
22. Show that $\lim _{n \rightarrow \infty} \frac{1}{n^{18}} \sum_{k=1}^{n} k^{16}=0$.
23. (Integration by parts) Let $f, g:[a, b] \rightarrow \mathbb{R}$ be such that f^{\prime} and g^{\prime} are continuous on $[a, b]$. Show that $\int_{a}^{b} f(x) g^{\prime}(x) d x=f(b) g(b)-f(a) g(a)-\int_{a}^{b} f^{\prime}(x) g(x) d x$.
24. $\left(^{*}\right)$ (Integration by substitution) Let $\phi:[\alpha, \beta] \rightarrow \mathbb{R}$ be differentiable and ϕ^{\prime} be continuous on $[\alpha, \beta]$. Suppose that $\phi([\alpha, \beta])=[a, b]$ and $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Then $\int_{\phi(\alpha)}^{\phi(\beta)} f(x) d x=\int_{\alpha}^{\beta} f(\phi(t)) \phi^{\prime}(t) d t$.
25. (Leibniz Rule) Let f be a continuous function and u and v be differentiable functions on $[a, b]$. If the range of u and v are contained in $[a, b]$, show that $\frac{d}{d x} \int_{u(x)}^{v(x)} f(t) d t=f(v(x)) \frac{d v}{d x}-$ $f(u(x)) \frac{d u}{d x}$.
26. Let $f:[1, \infty) \rightarrow \mathbb{R}$ be defined by $f(x)=\int_{1}^{x} \frac{\ln t}{1+t} d t$. Solve the equation $f(x)+f\left(\frac{1}{x}\right)=2$.

Practice Problems 18 : Hints/Solutions

1. (a) Follows immediately from the first FTC.
(b) Consider the function $f:[-1,1] \rightarrow \mathbb{R}$ defined by $f(x)=-1$ for $-1 \leq x<0, f(0)=0$ and $f(x)=1$ for $0<x \leq 1$. Then f is integrable on $[1,1]$. Since f does not have the intermediate value property, it cannot be a derivative (see Problem 18(c) of Practice Problems 7).
2. (a) $F(x)=0$ for $-1 \leq x \leq 0$ and $F(x)=x$ for $0<x \leq 1$.
(b) Let $f:[-1,1] \rightarrow \mathbb{R}$ be defined by $f\left(\frac{1}{n}\right)=\frac{1}{n}$ for every $n \in N$ and $f(x)=0$ otherwise. Then $F(x)=\int_{-1}^{x} f(t) d t=0$ for all $x \in[-1,1]$ and hence F is differentiable at 0 but f is not continuous at 0 .
3. Follows from the first FTC.
4. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and $f=F^{\prime}$ for some F on $[a, b]$. Define $F_{a}(x)=\int_{a}^{x} f(t) d t$ on $[a, b]$. Then by the first FTC, $F=F_{a}+C$ for some constant C. Since $F_{a}(a)=0$, $C=F(a)$ and hence $F(b)-F(a)=\int_{a}^{b} f(t) d t$.
5. Observe that F^{\prime} is not bounded.
6. Let $M=\sup \{|f(x)|: x \in[0,1]\}$. Then for $x \in[0,1],|f(x)| \leq \int_{0}^{x}|f(t)| d t \leq M x$. Now, $|f(x)| \leq \int_{0}^{x}|f(t)| d t \leq \int_{0}^{x} M t d t=M \frac{x^{2}}{2}$. Continue to show that $|f(x)| \leq M \frac{x^{n}}{n!} \rightarrow 0$.
7. Write $g(x)=x \int_{0}^{x} f(t) d t-\int_{0}^{x} t f(t) d t$ and apply the first FTC.
8. Write $g(x)=\frac{1}{\alpha}\left[\sin (\alpha x) \int_{0}^{x} f(t) \cos (\alpha t) d t-\cos (\alpha x) \int_{0}^{x} f(t) \sin (\alpha t) d t\right]$ and apply the first FTC.
9. Let $F(x)=\int_{0}^{x} f(t) d t$. Apply the Extended MVT to F on $[0,1]$.
10. Consider the function $F(x)=\int_{0}^{x} f(t) d t-x^{3}$ on $[0,1]$. Apply Rolle's theorem.
11. Let $F(x)=\int_{0}^{x} f(t) d t$ and $G(x)=\sin 2 x$. Apply the CMVT for F and G on $[0, \pi / 4]$.
12. Let $x_{0} \in(0, a)$. Then by Taylor's theorem, $f(x) \geq f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$. Then $\int_{0}^{a} f(x) d x \geq$ $a f\left(x_{0}\right)-a x_{0} f^{\prime}\left(x_{0}\right)+\frac{a^{2}}{2} f^{\prime}\left(x_{0}\right)$. Choose $x_{0}=\frac{a}{2}$.
13. Let $F(x)=\int_{a}^{x} f(t) d t$. Then $F^{\prime}(x)=f(x)$. The given condition implies that $F(x)=$ $F(b)-F(x)$. Therefore, $F^{\prime}(x)=0$ which implies that $f(x)=0$.
14. Define $h(x)=f(b) \int_{a}^{x} g(x) d x+f(a) \int_{x}^{b} g(x) d x$ for all $x \in[a, b]$. Now $h(a)=f(a) \int_{a}^{b} g(x) d x \leq$ $\int_{a}^{b} f(x) g(x) d x \leq f(b) \int_{a}^{b} g(x) d x=h(b)$. Apply the IVP.
15. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Define $F(x)=\int_{a}^{x} f(t) d t$. Then by the MVT, there $\exists c \in(a, b)$ such that $F(b)-F(a)=F^{\prime}(c)(b-a)$. Apply the First FTC. Conversely, let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable and f^{\prime} be continuous. Then by the MVT for integrals, $\exists c \in(a, b)$ such that $\int_{a}^{b} f^{\prime}(x) d x=f^{\prime}(c)(b-a)$. This implies that $f(b)-f(a)=f^{\prime}(c)(b-a)$.
16. Use the first MVT for integrals.
17. Use the first MVT for integrals.
18. Use the second MVT for integrals (See Problem 2 of Assignment 6).
19. Note that f is bounded on $[0,1]$. Apply the second MVT for integrals.
20. $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{n^{2}+k n}}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\sqrt{1+\frac{k}{n}}} \rightarrow \int_{0}^{1} \frac{d x}{\sqrt{1+x}}=2(\sqrt{2}-1)$.
21. Note that $\frac{1}{n^{3}}\left[\sin \frac{\pi}{n}+2^{2} \sin \frac{2 \pi}{n}+\ldots+n^{2} \sin \frac{n \pi}{n}\right]=\sum_{k=1}^{n} \frac{1}{n}\left(\frac{k}{n}\right)^{2} \sin \frac{k \pi}{n}$ which is a Riemann sum.
22. Note that $\frac{1}{n^{18}} \sum_{k=1}^{n} k^{16}=\frac{1}{n}\left[\frac{1}{n} \sum_{k=1}^{n}\left(\frac{k}{n}\right)^{16}\right]$ and $\frac{1}{n} \sum_{k=1}^{n}\left(\frac{k}{n}\right)^{16} \rightarrow \int_{0}^{1} x^{16} d x$.
23. Let $h(x)=f(x) g(x)$. Then $h^{\prime}=f^{\prime} g+f g^{\prime}$. Therefore $\int_{a}^{b} h^{\prime}(x) d x=h(b)-h(a)$.
24. Define $F(x)=\int_{\phi(\alpha)}^{x} f(u) d u$. Therefore $\left.\frac{d}{d t} F(\phi(t))\right)=F^{\prime}(\phi(t)) \phi^{\prime}(t)=f(\phi(t)) \phi^{\prime}(t)$. Now $\int_{\alpha}^{\beta} f(\phi(t)) \phi^{\prime}(t) d t=[F(\phi(t))]_{\alpha}^{\beta}=F(\phi(\beta))$.
25. Note that $\frac{d}{d x} \int_{u(x)}^{v(x)} f(t) d t=\frac{d}{d x}\left[\int_{0}^{v(x)} f(t) d t-\int_{0}^{u(x)} f(t) d t\right]$. Apply the first FTC.
26. Observe that $f\left(\frac{1}{x}\right)=\int_{1}^{1 / x} \frac{\ln t}{1+t} d t=\int_{1}^{x} \frac{\ln y}{y(1+y)} d y$, by taking $t=\frac{1}{y}$. Therefore $f(x)+f\left(\frac{1}{x}\right)=$ $\int_{1}^{x} \frac{\ln t}{1+t}\left(1+\frac{1}{t}\right) d t=\int_{1}^{x} \frac{\ln t}{t} d t=\frac{1}{2}(\ln x)^{2}$. Now $f(x)+f\left(\frac{1}{x}\right)=2$ implies that $\ln x= \pm 2$ which implies that $x=e^{2}$ as $x>1$.

[^0]: Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.

