Practice Problems 3: Monotone sequences, subsequences

- 1. Let $x_n = \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n}$ for all $n \in \mathbb{N}$. Show that (x_n) is increasing and bounded.
- 2. Let (x_n) be a sequence in \mathbb{R} . Prove or disprove the following statements.
 - (a) If $x_n \to 0$ and (y_n) is a bounded sequence then $x_n y_n \to 0$.
 - (b) If $x_n \to \infty$ and (y_n) is a bounded sequence then $x_n y_n \to \infty$.
 - (c) If (x_n) is increasing and not bounded then $x_n \to \infty$.
- 3. Show that the sequence (x_n) is bounded and monotone, and find its limit where (x_n) is defined as
 - (a) $x_1 = 2$ and $x_{n+1} = 2 \frac{1}{x_n}$ for $n \in \mathbb{N}$;
 - (b) $x_1 = \sqrt{2}$ and $x_{n+1} = \sqrt{2x_n}$ for $n \in \mathbb{N}$;
 - (c) $x_1 = 1$ and $x_{n+1} = \frac{4+3x_n}{3+2x_n}$, for $n \in \mathbb{N}$.
- 4. Let $0 < b_1 < a_1$ and define $a_{n+1} = \frac{a_n + b_n}{2}$ and $b_{n+1} = \sqrt{a_n b_n}$ for all $n \in \mathbb{N}$. Show that both (a_n) and (b_n) converge.
- 5. Let a > 0 and $x_1 > 0$. Define $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$ for all $n \in \mathbb{N}$. Show that the sequence (x_n) converges to \sqrt{a} (*The iterative process given in this problem can be used to find approximate values of* \sqrt{a} *in case it is irrational. How this iterative process is generated will be discussed in Lecture 11*).
- 6. Let (x_n) be a sequence in (0,1). Suppose $4x_n(1-x_{n+1}) > 1$ for all $n \in \mathbb{N}$. Show that the sequence is monotone and find its limit.
- 7. Let $x_n = \frac{1-2+3-4+\dots+(-1)^{n-1}n}{n}$ for all $n \in \mathbb{N}$. Test the convergence of (x_n) .
- 8. Let (x_n) be a sequence and $x_0 \in \mathbb{R}$. Suppose that (x_n) does not converge to x_0 . Show that there exist $\epsilon_0 > 0$ and a subsequence (x_{n_k}) such that $|x_{n_k} x_0| \ge \epsilon_0$ for every k.
- 9. Let (x_n) be given. Suppose $\lim_{n \to \infty} x_{2n-1} = x_0$ and $\lim_{n \to \infty} x_{2n} = x_0$ for some $x_0 \in \mathbb{R}$. Show that $x_n \to x_0$.
- 10. Let $x_n = 2 + (-1)^n$ for all $n \in \mathbb{N}$. Show that $\lim_{n \to \infty} (x_1 x_2 \cdots x_n)^{1/n} = \sqrt{3}$.
- 11. Let (x_n) be a sequence in \mathbb{R} and $x_0 \in \mathbb{R}$. Suppose that every subsequence of (x_n) has at least one subsequence which converges to x_0 . Show that $x_n \to x_0$.
- 12. (*) Prove the nested interval theorem directly from the completeness property (i.e., without using Theorem 3.1).
- 13. (*) Let $x_n = (1 + \frac{1}{n})^n$ and $y_n = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$ for $n \in \mathbb{N}$.
 - (a) Using the binomial theorem, show that (x_n) is increasing.
 - (b) Show that $x_n \leq y_n$ for all $n \in \mathbb{N}$. Further, show that (x_n) and (y_n) are bounded.
 - (c) For n > m, show that $x_n > 1 + 1 + \frac{1}{2!}(1 \frac{1}{n}) + \frac{1}{3!}(1 \frac{1}{n})(1 \frac{2}{n}) + \dots + \frac{1}{m!}(1 \frac{1}{n}) \cdots (1 \frac{m-1}{n})$.
 - (d) Show that $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.

Practice Problems 3: Hints/Solutions

1. Note that $x_{n+1} - x_n = \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n+1} \ge \frac{2}{2n+2} - \frac{1}{n+1} = 0$ and $0 < x_n \le \frac{1}{n} + \frac{1}{n} + \dots + \frac{1}{n} = 1$.

- 2. (a) True. Find $M \in \mathbb{N}$ such that $0 \leq |x_n y_n| < M |x_n|$. Allow $n \to \infty$.
 - (b) False. Take $x_n = n$ and $y_n = \frac{1}{n}$.

(c) True. Let M > 0. Since (x_n) is not bounded (and increasing), there exists $N \in \mathbb{N}$ such that $x_N > M$. As (x_n) is increasing, $x_n \ge x_N$ for all $n \ge N$. Therefore $x_n > M$ for all $n \ge N$.

3. (a) Observe that $x_2 < x_1$. If $x_n < x_{n-1}$, then $x_{n+1} = 2 - \frac{1}{x_n} < 2 - \frac{1}{x_{n-1}} = x_n$. By induction the sequence is decreasing. Note that $x_n > 0$. The sequence converges and the limit is 1.

(b) Observe that $x_2 > x_1$. Since $x_{n+1}^2 - x_n^2 = 2(x_n - x_{n-1})$, by induction (x_n) is increasing. It can be observed again by induction that $x_n \leq 2$. The limit is 2.

(c) Note that $x_2 > x_1$. Since $x_{n+1} - x_n = \frac{x_n - x_{n-1}}{(3+2x_n)(3+2x_{n-1})}$, by induction (x_n) is increasing. Note that $x_{n+1} = 1 + \frac{1+x_n}{3+2x_n} \le 2$. The limit is $\sqrt{2}$.

- 4. By the AM-GM inequality $b_n \leq a_n$. Therefore $0 \leq a_{n+1} \leq \frac{a_n + a_n}{2} = a_n$. Note that $b_{n+1} \geq \sqrt{b_n b_n} = b_n$ and $b_n \leq a_n \leq a_1$. Both (a_n) and (b_n) are bounded.
- 5. Note that $x_n > 0$ and $x_{n+1} x_n = \frac{1}{2}(x_n + \frac{a}{x_n}) x_n = \frac{1}{2}(\frac{a-x_n^2}{x_n})$. Further, by the A.M -G.M. inequality, $x_{n+1} \ge \sqrt{a}$. Therefore (x_n) is decreasing and bounded below.
- 6. By the AM-GM inequality $\frac{x_n+(1-x_{n+1})}{2} \ge \sqrt{x_n(1-x_{n+1})} > \frac{1}{2}$. Therefore $x_n > x_{n+1}$. Suppose $x_n \to x_0$ for some x_0 . Then $4x_0(1-x_0) \ge 1$ which implies that $(2x_0-1)^2 \le 0$. Therefore $x_0 = \frac{1}{2}$.
- 7. Here $x_{2n} = -\frac{1}{2}$ and $x_{2n+1} = \frac{n+1}{2n+1} \rightarrow \frac{1}{2}$. The sequence does not converge.
- 8. By Problem 11 of PP2, there exists $\epsilon_0 > 0$ such that for every $N \in \mathbb{N}$, there exists n such that n > N and $|x_n x_0| \ge \epsilon_0$. First take $N_1 = 1$ and choose $n_1 > N_1$ such that $|x_{n_1} x_0| \ge \epsilon_0$. Then take some $N_2 > n_1$ and choose $n_2 > N_2$ such that $|x_{n_2} x_0| \ge \epsilon_0$. Note that $n_2 > n_1$. We have found x_{n_1} and x_{n_2} where $n_2 > n_1$. Proceed.
- 9. Suppose that (x_n) does not converge to x_0 . Use Problem 8 to arrive at a contradiction.
- 10. Let $y_n = (x_1 x_2 \dots x_n)^{\frac{1}{n}}$. Then $y_{2n-1} = (3^{n-1})^{\frac{1}{2n-1}}$ for $n \ge 1$ and $y_{2n} = (3^n)^{\frac{1}{2n}}$ for $n \ge 1$. Since $y_{2n} \to \sqrt{3}$ and $y_{2n-1} \to \sqrt{3}$, $y_n \to \sqrt{3}$.
- 11. Suppose that (x_n) does not converge to x_0 . Apply Problem 8 to get a contradiction.
- 12. Since $[a_n, b_n] \supseteq [a_{n+1}, b_{n+1}]$ for all n, if we let $A = \{a_n : n \in \mathbb{N}\}$, then every b_n is an upper bound for A. Let $x = \sup A$. Then $a_n \leq x \leq b_n$ for all $n \in \mathbb{N}$. For showing that $\bigcap_{n=1}^{\infty} [a_n, b_n]$ is a singleton, see the last part of the proof of Theorem 3.1.
- 13. (a) By the binomial theorem

$$\begin{aligned} x_n &= 1 + n \cdot \frac{1}{n} + \frac{n(n-1)}{1 \cdot 2} \cdot \frac{1}{n^2} + \dots + \frac{n(n-1)\cdots 1}{1 \cdots 2 \cdots n} \cdot \frac{1}{n^n} \\ &= 1 + 1 + \frac{1}{2!}(1 - \frac{1}{n}) + \frac{1}{3!}(1 - \frac{1}{n})(1 - \frac{2}{n}) + \dots + \frac{1}{n!}(1 - \frac{1}{n})\cdots(1 - \frac{n-1}{n}) \quad (3.1) \\ &< 1 + 1 + \frac{1}{2!}(1 - \frac{1}{n+1}) + \dots + \frac{1}{(n+1)!}(1 - \frac{1}{n+1})(1 - \frac{2}{n+1})\cdots(1 - \frac{n}{n+1}) \\ &= x_{n+1} \end{aligned}$$

(b) Note that $x_n \leq 1+1+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!}=y_n\leq 1+1+\frac{1}{2}+\frac{1}{2^2}+\ldots+\frac{1}{2^{n-1}}\leq 3$. Therefore, $2\leq x_n\leq y_n\leq 3$ for all $n\in\mathbb{N}$.

(c) Let n > m. It follows from equation (3.1) that

$$x_n > 1 + 1 + \frac{1}{2!}\left(1 - \frac{1}{n}\right) + \frac{1}{3!}\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right) + \dots + \frac{1}{m!}\left(1 - \frac{1}{n}\right)\cdots\left(1 - \frac{m-1}{n}\right).$$
 (3.2)

(d) Fixing *m* in inequality (3.2) and allowing $n \to \infty$, we get that $\lim_{n \to \infty} x_n \ge y_m$. Allowing $m \to \infty$, we get $\lim_{n \to \infty} x_n \ge \lim_{n \to \infty} y_n$. Since $x_n \le y_n$ for all $n \in \mathbb{N}$, we have $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$.