1. Let $x_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\cdots \frac{1}{n+n}$ for all $n \in \mathbb{N}$. Show that $\left(x_{n}\right)$ is increasing and bounded.
2. Let $\left(x_{n}\right)$ be a sequence in \mathbb{R}. Prove or disprove the following statements.
(a) If $x_{n} \rightarrow 0$ and $\left(y_{n}\right)$ is a bounded sequence then $x_{n} y_{n} \rightarrow 0$.
(b) If $x_{n} \rightarrow \infty$ and (y_{n}) is a bounded sequence then $x_{n} y_{n} \rightarrow \infty$.
(c) If $\left(x_{n}\right)$ is increasing and not bounded then $x_{n} \rightarrow \infty$.
3. Show that the sequence $\left(x_{n}\right)$ is bounded and monotone, and find its limit where $\left(x_{n}\right)$ is defined as
(a) $x_{1}=2$ and $x_{n+1}=2-\frac{1}{x_{n}}$ for $n \in \mathbb{N}$;
(b) $x_{1}=\sqrt{2}$ and $x_{n+1}=\sqrt{2 x_{n}}$ for $n \in \mathbb{N}$;
(c) $x_{1}=1$ and $x_{n+1}=\frac{4+3 x_{n}}{3+2 x_{n}}$, for $n \in \mathbb{N}$.
4. Let $0<b_{1}<a_{1}$ and define $a_{n+1}=\frac{a_{n}+b_{n}}{2}$ and $b_{n+1}=\sqrt{a_{n} b_{n}}$ for all $n \in \mathbb{N}$. Show that both $\left(a_{n}\right)$ and $\left(b_{n}\right)$ converge.
5. Let $a>0$ and $x_{1}>0$. Define $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)$ for all $n \in \mathbb{N}$. Show that the sequence $\left(x_{n}\right)$ converges to \sqrt{a} (The iterative process given in this problem can be used to find approximate values of \sqrt{a} in case it is irrational. How this iterative process is generated will be discussed in Lecture 11).
6. Let $\left(x_{n}\right)$ be a sequence in $(0,1)$. Suppose $4 x_{n}\left(1-x_{n+1}\right)>1$ for all $n \in \mathbb{N}$. Show that the sequence is monotone and find its limit.
7. Let $x_{n}=\frac{1-2+3-4+\cdots+(-1)^{n-1} n}{n}$ for all $n \in \mathbb{N}$. Test the convergence of $\left(x_{n}\right)$.
8. Let $\left(x_{n}\right)$ be a sequence and $x_{0} \in \mathbb{R}$. Suppose that $\left(x_{n}\right)$ does not converge to x_{0}. Show that there exist $\epsilon_{0}>0$ and a subsequence $\left(x_{n_{k}}\right)$ such that $\left|x_{n_{k}}-x_{0}\right| \geq \epsilon_{0}$ for every k.
9. Let $\left(x_{n}\right)$ be given. Suppose $\lim _{n \rightarrow \infty} x_{2 n-1}=x_{0}$ and $\lim _{n \rightarrow \infty} x_{2 n}=x_{0}$ for some $x_{0} \in \mathbb{R}$. Show that $x_{n} \rightarrow x_{0}$.
10. Let $x_{n}=2+(-1)^{n}$ for all $n \in \mathbb{N}$. Show that $\lim _{n \rightarrow \infty}\left(x_{1} x_{2} \cdots x_{n}\right)^{1 / n}=\sqrt{3}$.
11. Let $\left(x_{n}\right)$ be a sequence in \mathbb{R} and $x_{0} \in \mathbb{R}$. Suppose that every subsequence of $\left(x_{n}\right)$ has at least one subsequence which converges to x_{0}. Show that $x_{n} \rightarrow x_{0}$.
12. (*) Prove the nested interval theorem directly from the completeness property (i.e., without using Theorem 3.1).
13. $\left(^{*}\right)$ Let $x_{n}=\left(1+\frac{1}{n}\right)^{n}$ and $y_{n}=1+1+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!}$ for $n \in \mathbb{N}$.
(a) Using the binomial theorem, show that $\left(x_{n}\right)$ is increasing.
(b) Show that $x_{n} \leq y_{n}$ for all $n \in \mathbb{N}$. Further, show that $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are bounded.
(c) For $n>m$, show that $x_{n}>1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\frac{1}{3!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)+\cdots+\frac{1}{m!}\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{m-1}{n}\right)$.
(d) Show that $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}$.
14. Note that $x_{n+1}-x_{n}=\frac{1}{2 n+1}+\frac{1}{2 n+2}-\frac{1}{n+1} \geq \frac{2}{2 n+2}-\frac{1}{n+1}=0$ and $0<x_{n} \leq \frac{1}{n}+\frac{1}{n}+\cdots+\frac{1}{n}=1$.
15. (a) True. Find $M \in \mathbb{N}$ such that $0 \leq\left|x_{n} y_{n}\right|<M\left|x_{n}\right|$. Allow $n \rightarrow \infty$.
(b) False. Take $x_{n}=n$ and $y_{n}=\frac{1}{n}$.
(c) True. Let $M>0$. Since $\left(x_{n}\right)$ is not bounded (and increasing), there exists $N \in \mathbb{N}$ such that $x_{N}>M$. As $\left(x_{n}\right)$ is increasing, $x_{n} \geq x_{N}$ for all $n \geq N$. Therefore $x_{n}>M$ for all $n \geq N$.
16. (a) Observe that $x_{2}<x_{1}$. If $x_{n}<x_{n-1}$, then $x_{n+1}=2-\frac{1}{x_{n}}<2-\frac{1}{x_{n-1}}=x_{n}$. By induction the sequence is decreasing. Note that $x_{n}>0$. The sequence converges and the limit is 1 .
(b) Observe that $x_{2}>x_{1}$. Since $x_{n+1}^{2}-x_{n}^{2}=2\left(x_{n}-x_{n-1}\right)$, by induction $\left(x_{n}\right)$ is increasing. It can be observed again by induction that $x_{n} \leq 2$. The limit is 2 .
(c) Note that $x_{2}>x_{1}$. Since $x_{n+1}-x_{n}=\frac{x_{n}-x_{n-1}}{\left(3+2 x_{n}\right)\left(3+2 x_{n-1}\right)}$, by induction $\left(x_{n}\right)$ is increasing. Note that $x_{n+1}=1+\frac{1+x_{n}}{3+2 x_{n}} \leq 2$. The limit is $\sqrt{2}$.
17. By the AM-GM inequality $b_{n} \leq a_{n}$. Therefore $0 \leq a_{n+1} \leq \frac{a_{n}+a_{n}}{2}=a_{n}$. Note that $b_{n+1} \geq \sqrt{b_{n} b_{n}}=b_{n}$ and $b_{n} \leq a_{n} \leq a_{1}$. Both $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are bounded.
18. Note that $x_{n}>0$ and $x_{n+1}-x_{n}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)-x_{n}=\frac{1}{2}\left(\frac{a-x_{n}^{2}}{x_{n}}\right)$. Further, by the A.M -G.M. inequality, $x_{n+1} \geq \sqrt{a}$. Therefore $\left(x_{n}\right)$ is decreasing and bounded below.
19. By the AM-GM inequality $\frac{x_{n}+\left(1-x_{n+1}\right)}{2} \geq \sqrt{x_{n}\left(1-x_{n+1}\right)}>\frac{1}{2}$. Therefore $x_{n}>x_{n+1}$. Suppose $x_{n} \rightarrow x_{0}$ for some x_{0}. Then $4 x_{0}\left(1-x_{0}\right) \geq 1$ which implies that $\left(2 x_{0}-1\right)^{2} \leq 0$. Therefore $x_{0}=\frac{1}{2}$.
20. Here $x_{2 n}=-\frac{1}{2}$ and $x_{2 n+1}=\frac{n+1}{2 n+1} \rightarrow \frac{1}{2}$. The sequence does not converge.
21. By Problem 11 of PP2, there exists $\epsilon_{0}>0$ such that for every $N \in \mathbb{N}$, there exists n such that $n>N$ and $\left|x_{n}-x_{0}\right| \geq \epsilon_{0}$. First take $N_{1}=1$ and choose $n_{1}>N_{1}$ such that $\left|x_{n_{1}}-x_{0}\right| \geq \epsilon_{0}$. Then take some $N_{2}>n_{1}$ and choose $n_{2}>N_{2}$ such that $\left|x_{n_{2}}-x_{0}\right| \geq \epsilon_{0}$. Note that $n_{2}>n_{1}$. We have found $x_{n_{1}}$ and $x_{n_{2}}$ where $n_{2}>n_{1}$. Proceed.
22. Suppose that $\left(x_{n}\right)$ does not converge to x_{0}. Use Problem 8 to arrive at a contradiction.
23. Let $y_{n}=\left(x_{1} x_{2} \ldots x_{n}\right)^{\frac{1}{n}}$. Then $y_{2 n-1}=\left(3^{n-1}\right)^{\frac{1}{2 n-1}}$ for $n \geq 1$ and $y_{2 n}=\left(3^{n}\right)^{\frac{1}{2 n}}$ for $n \geq 1$. Since $y_{2 n} \rightarrow \sqrt{3}$ and $y_{2 n-1} \rightarrow \sqrt{3}, y_{n} \rightarrow \sqrt{3}$.
24. Suppose that $\left(x_{n}\right)$ does not converge to x_{0}. Apply Problem 8 to get a contradiction.
25. Since $\left[a_{n}, b_{n}\right] \supseteq\left[a_{n+1}, b_{n+1}\right]$ for all n, if we let $A=\left\{a_{n}: n \in \mathbb{N}\right\}$, then every b_{n} is an upper bound for A. Let $x=\sup A$. Then $a_{n} \leq x \leq b_{n}$ for all $n \in \mathbb{N}$. For showing that $\bigcap_{n=1}^{\infty}\left[a_{n}, b_{n}\right]$ is a singleton, see the last part of the proof of Theorem 3.1.
26. (a) By the binomial theorem

$$
\begin{align*}
x_{n} & =1+n \cdot \frac{1}{n}+\frac{n(n-1)}{1 \cdot 2} \cdot \frac{1}{n^{2}}+\cdots+\frac{n(n-1) \cdots 1}{1 \cdots 2 \cdots n} \cdot \frac{1}{n^{n}} \\
& =1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\frac{1}{3!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)+\cdots+\frac{1}{n!}\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{n-1}{n}\right) \tag{3.1}\\
& <1+1+\frac{1}{2!}\left(1-\frac{1}{n+1}\right)+\cdots+\frac{1}{(n+1)!}\left(1-\frac{1}{n+1}\right)\left(1-\frac{2}{n+1}\right) \cdots\left(1-\frac{n}{n+1}\right) \\
& =x_{n+1}
\end{align*}
$$

(b) Note that $x_{n} \leq 1+1+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!}=y_{n} \leq 1+1+\frac{1}{2}+\frac{1}{2^{2}}+\ldots+\frac{1}{2^{n-1}} \leq 3$. Therefore, $2 \leq x_{n} \leq y_{n} \leq 3$ for all $n \in \mathbb{N}$.
(c) Let $n>m$. It follows from equation (3.1) that

$$
\begin{equation*}
x_{n}>1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\frac{1}{3!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)+\cdots+\frac{1}{m!}\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{m-1}{n}\right) . \tag{3.2}
\end{equation*}
$$

(d) Fixing m in inequality (3.2) and allowing $n \rightarrow \infty$, we get that $\lim _{n \rightarrow \infty} x_{n} \geq y_{m}$. Allowing $m \rightarrow \infty$, we get $\lim _{n \rightarrow \infty} x_{n} \geq \lim _{n \rightarrow \infty} y_{n}$. Since $x_{n} \leq y_{n}$ for all $n \in \mathbb{N}$, we have $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}$.

