
Practice Problems 3: Monotone sequences, subsequences

1. Let xn = 1
n+1 + 1

n+2 + · · · 1
n+n for all n ∈ N. Show that (xn) is increasing and bounded.

2. Let (xn) be a sequence in R. Prove or disprove the following statements.

(a) If xn → 0 and (yn) is a bounded sequence then xnyn → 0.

(b) If xn → ∞ and (yn) is a bounded sequence then xnyn → ∞.

(c) If (xn) is increasing and not bounded then xn → ∞.

3. Show that the sequence (xn) is bounded and monotone, and find its limit where (xn) is
defined as

(a) x1 = 2 and xn+1 = 2− 1
xn

for n ∈ N;

(b) x1 =
√
2 and xn+1 =

√
2xn for n ∈ N;

(c) x1 = 1 and xn+1 =
4+3xn
3+2xn

, for n ∈ N.

4. Let 0 < b1 < a1 and define an+1 = an+bn
2 and bn+1 =

√
anbn for all n ∈ N. Show that both

(an) and (bn) converge.

5. Let a > 0 and x1 > 0. Define xn+1 =
1
2

(
xn + a

xn

)
for all n ∈ N. Show that the sequence (xn)

converges to
√
a (The iterative process given in this problem can be used to find approximate

values of
√
a in case it is irrational. How this iterative process is generated will be discussed

in Lecture 11).

6. Let (xn) be a sequence in (0, 1). Suppose 4xn(1 − xn+1) > 1 for all n ∈ N. Show that the
sequence is monotone and find its limit.

7. Let xn = 1−2+3−4+···+(−1)n−1n
n for all n ∈ N. Test the convergence of (xn).

8. Let (xn) be a sequence and x0 ∈ R. Suppose that (xn) does not converge to x0. Show that
there exist ε0 > 0 and a subsequence (xnk

) such that |xnk
− x0| ≥ ε0 for every k.

9. Let (xn) be given. Suppose lim
n→∞

x2n−1 = x0 and lim
n→∞

x2n = x0 for some x0 ∈ R. Show that
xn → x0.

10. Let xn = 2 + (−1)n for all n ∈ N. Show that lim
n→∞

(x1x2 · · ·xn)1/n =
√
3.

11. Let (xn) be a sequence in R and x0 ∈ R. Suppose that every subsequence of (xn) has at
least one subsequence which converges to x0. Show that xn → x0.

12. (*) Prove the nested interval theorem directly from the completeness property (i.e., without
using Theorem 3.1).

13. (*) Let xn = (1 + 1
n)

n and yn = 1 + 1 + 1
2! +

1
3! + ...+ 1

n! for n ∈ N.

(a) Using the binomial theorem, show that (xn) is increasing.

(b) Show that xn ≤ yn for all n ∈ N. Further, show that (xn) and (yn) are bounded.

(c) For n > m, show that xn > 1+1+ 1
2!(1−

1
n)+

1
3!(1−

1
n)(1−

2
n)+· · ·+ 1

m!(1−
1
n) · · · (1−

m−1
n ).

(d) Show that lim
n→∞

xn = lim
n→∞

yn.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.



Practice Problems 3: Hints/Solutions

1. Note that xn+1−xn = 1
2n+1+

1
2n+2−

1
n+1 ≥ 2

2n+2−
1

n+1 = 0 and 0 < xn ≤ 1
n+

1
n+· · ·+ 1

n = 1.

2. (a) True. Find M ∈ N such that 0 ≤ |xnyn| < M |xn|. Allow n → ∞.

(b) False. Take xn = n and yn = 1
n .

(c) True. Let M > 0. Since (xn) is not bounded (and increasing), there exists N ∈ N such
that xN > M . As (xn) is increasing, xn ≥ xN for all n ≥ N . Therefore xn > M for all
n ≥ N .

3. (a) Observe that x2 < x1. If xn < xn−1, then xn+1 = 2− 1
xn

< 2− 1
xn−1

= xn. By induction
the sequence is decreasing. Note that xn > 0. The sequence converges and the limit is 1.

(b) Observe that x2 > x1. Since x2n+1 − x2n = 2(xn − xn−1), by induction (xn) is increasing.
It can be observed again by induction that xn ≤ 2. The limit is 2.

(c) Note that x2 > x1. Since xn+1 − xn = xn−xn−1

(3+2xn)(3+2xn−1)
, by induction (xn) is increasing.

Note that xn+1 = 1 + 1+xn
3+2xn

≤ 2. The limit is
√
2.

4. By the AM-GM inequality bn ≤ an. Therefore 0 ≤ an+1 ≤ an+an
2 = an. Note that

bn+1 ≥
√
bnbn = bn and bn ≤ an ≤ a1. Both (an) and (bn) are bounded.

5. Note that xn > 0 and xn+1 − xn = 1
2(xn +

a
xn

)− xn = 1
2(

a−x2
n

xn
). Further, by the A.M -G.M.

inequality, xn+1 ≥
√
a. Therefore (xn) is decreasing and bounded below.

6. By the AM-GM inequality xn+(1−xn+1)
2 ≥

√
xn(1− xn+1) > 1

2 . Therefore xn > xn+1.
Suppose xn → x0 for some x0. Then 4x0(1 − x0) ≥ 1 which implies that (2x0 − 1)2 ≤ 0.
Therefore x0 =

1
2 .

7. Here x2n = −1
2 and x2n+1 =

n+1
2n+1 → 1

2 . The sequence does not converge.

8. By Problem 11 of PP2, there exists ε0 > 0 such that for every N ∈ N, there exists n
such that n > N and |xn − x0| ≥ ε0. First take N1 = 1 and choose n1 > N1 such that
|xn1 − x0| ≥ ε0. Then take some N2 > n1 and choose n2 > N2 such that |xn2 − x0| ≥ ε0.
Note that n2 > n1. We have found xn1 and xn2 where n2 > n1. Proceed.

9. Suppose that (xn) does not converge to x0. Use Problem 8 to arrive at a contradiction.

10. Let yn = (x1x2 . . . xn)
1
n . Then y2n−1 = (3n−1)

1
2n−1 for n ≥ 1 and y2n = (3n)

1
2n for n ≥ 1.

Since y2n →
√
3 and y2n−1 →

√
3, yn →

√
3.

11. Suppose that (xn) does not converge to x0. Apply Problem 8 to get a contradiction.

12. Since [an, bn] ⊇ [an+1, bn+1] for all n, if we let A = {an : n ∈ N}, then every bn is an upper
bound for A. Let x = sup A. Then an ≤ x ≤ bn for all n ∈ N. For showing that

⋂∞
n=1[an, bn]

is a singleton, see the last part of the proof of Theorem 3.1.

13. (a) By the binomial theorem

xn = 1 + n · 1
n
+

n(n− 1)

1 · 2
· 1

n2
+ · · ·+ n(n− 1) · · · 1

1 · · · 2 · · ·n
· 1

nn

= 1 + 1 +
1

2!
(1− 1

n
) +

1

3!
(1− 1

n
)(1− 2

n
) + · · ·+ 1

n!
(1− 1

n
) · · · (1− n− 1

n
) (3.1)

< 1 + 1 +
1

2!
(1− 1

n+ 1
) + · · ·+ 1

(n+ 1)!
(1− 1

n+ 1
)(1− 2

n+ 1
) · · · (1− n

n+ 1
)

= xn+1



(b) Note that xn ≤ 1+1+ 1
2! +

1
3! + . . .+ 1

n! = yn ≤ 1+1+ 1
2 +

1
22

+ . . .+ 1
2n−1 ≤ 3. Therefore,

2 ≤ xn ≤ yn ≤ 3 for all n ∈ N.
(c) Let n > m. It follows from equation (3.1) that

xn > 1 + 1 +
1

2!
(1− 1

n
) +

1

3!
(1− 1

n
)(1− 2

n
) + · · ·+ 1

m!
(1− 1

n
) · · · (1− m− 1

n
). (3.2)

(d) Fixing m in inequality (3.2) and allowing n → ∞, we get that lim
n→∞

xn ≥ ym. Allowing

m → ∞, we get lim
n→∞

xn ≥ lim
n→∞

yn. Since xn ≤ yn for all n ∈ N, we have lim
n→∞

xn = lim
n→∞

yn.


