1. Show that $\left(x_{n}\right)$ satisfies the Cauchy criterion where $\left(x_{n}\right)$ is defined as
(a) $x_{1}=2$ and $x_{n+1}=2+\frac{1}{x_{n}}$ for all $n \in \mathbb{N}$;
(b) $x_{1}=1$ and $x_{n+1}=\frac{1}{2+x_{n}^{2}}$ for all $n \in \mathbb{N}$;
(c) $x_{1}=1$ and $x_{n+1}=\frac{1}{6}\left(x_{n}^{2}+8\right)$ for all $n \in \mathbb{N}$.
2. Let $\left(x_{n}\right)$ satisfy the Cauchy criterion. Show that $\left(x_{n}\right)$ is bounded.
3. Let $\left(x_{n}\right)$ be a sequence of positive real numbers. Prove or disprove the following statements.
(a) If $x_{n+1}-x_{n} \rightarrow 0$ then $\left(x_{n}\right)$ converges.
(b) If $\left|x_{n+2}-x_{n+1}\right|<\left|x_{n+1}-x_{n}\right|$ for all $n \in \mathbb{N}$ then (x_{n}) converges.
(c) If (x_{n}) satisfies the Cauchy criterion, then there exists an $\alpha \in \mathbb{R}$ such that $0<\alpha<1$ and $\left|x_{n+1}-x_{n}\right| \leq \alpha\left|x_{n}-x_{n-1}\right|$ for all $n \in \mathbb{N}$.
4. Let $\left(x_{n}\right)$ be a sequence of integers such that $x_{n+1} \neq x_{n}$ for all $n \in \mathbb{N}$. Prove or disprove the following statements.
(a) The sequence $\left(x_{n}\right)$ does not satisfy the Cauchy criterion.
(b) The sequence $\left(x_{n}\right)$ cannot have a convergent subsequence.
5. Suppose that $0<\alpha<1$ and that $\left(x_{n}\right)$ is a sequence satisfying the condition:
$\left|x_{n+1}-x_{n}\right| \leq \alpha^{n}, \quad n=1,2,3, \ldots$. Show that $\left(x_{n}\right)$ satisfies the Cauchy criterion.
6. Let $\left(x_{n}\right)$ be defined by $x_{1}=\frac{1}{1!}, x_{2}=\frac{1}{1!}-\frac{1}{2!}, \ldots, x_{n}=\frac{1}{1!}-\frac{1}{2!}+\ldots+\frac{(-1)^{n+1}}{n!}$ for $n \in \mathbb{N}$. Show that (x_{n}) converges.
7. Let $1 \leq x_{1} \leq x_{2} \leq 2$ and $x_{n+2}=\sqrt{x_{n+1} x_{n}}$, for $n \in \mathbb{N}$.
(a) Show that $\frac{x_{n+1}}{x_{n}} \geq \frac{1}{2},\left|x_{n+1}-x_{n}\right| \leq \frac{2}{3}\left|x_{n}-x_{n-1}\right|$ for all $n \in \mathbb{N}$ and $\left(x_{n}\right)$ converges.
(b) Observe that $x_{n+2}^{2} x_{n+1}=x_{n+1}^{2} x_{n}$ for all $n \in \mathbb{N}$ and find the limit of $\left(x_{n}\right)$.
8. Let $x_{1}=1, x_{2}=2$ and $x_{n+2}=\frac{x_{n+1}+x_{n}}{2}$ for all $n \in \mathbb{N}$. Using the nested interval theorem, show that (x_{n}) converges .
9. (*) Show that a sequence (x_{n}) has no convergent subsequence if and only if $\left|x_{n}\right| \rightarrow \infty$.
10. (*) Show that a sequence $\left(x_{n}\right)$ is bounded if and only if every subsequence of $\left(x_{n}\right)$ has a convergent subsequence.
11. (*) Let $\left(x_{n}\right)$ be a sequence in \mathbb{R}. We say that a positive integer n is a peak of $\left(x_{n}\right)$ if $x_{n}>x_{m}$ whenever $m>n$ (i.e., if x_{n} is greater than every subsequent term of $\left(x_{n}\right)$).
(a) If $\left(x_{n}\right)$ has infinitely many peaks, show that it has a decreasing subsequence.
(b) If (x_{n}) has only finitely many peaks, show that it has an increasing subsequence.
(c) From (a) and (b) conclude that every sequence in \mathbb{R} has a monotone subsequence. Further, conclude that every bounded sequence in \mathbb{R} has a convergent subsequence (This is an alternate proof of the Bolzano-Weierstrass Theorem).
12. (a) Note that $\left|x_{n+1}-x_{n}\right|=\left|\frac{1}{x_{n}}-\frac{1}{x_{n-1}}\right|=\left|\frac{x_{n-1}-x_{n}}{x_{n} x_{n-1}}\right| \leq \frac{1}{4}\left|x_{n-1}-x_{n}\right|$. Hence $\left(x_{n}\right)$ satisfies the contractive condition and therefore it satisfies the Cauchy criterion.
(b) Observe that $\left|x_{n+1}-x_{n}\right|=\frac{\left|x_{n}^{2}-x_{n-1}^{2}\right|}{\left(2+x_{n}^{2}\right)\left(2+x_{n-1}^{2}\right)} \leq \frac{\left|x_{n}-x_{n-1}\right|\left|x_{n}+x_{n-1}\right|}{4} \leq \frac{2}{4}\left|x_{n}-x_{n-1}\right|$.
(c) We have $\left|x_{n+1}-x_{n}\right| \leq \frac{\left|x_{n}-x_{n-1}\right|\left|x_{n}+x_{n-1}\right|}{6} \leq \frac{4}{6}\left|x_{n}-x_{n-1}\right|$.
13. Since (x_{n}) satisfies the Cauchy criterion, there exists $N \in \mathbb{N}$ such that $\left|x_{n}-x_{N}\right|<1$ for all $n \geq N$. Hence $\left|x_{n}\right| \leq \max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \cdots,\left|x_{N-1}\right|, 1+\left|x_{N}\right|\right\}$ for all $n \in \mathbb{N}$.
14. (a) False. Choose $x_{n}=\sqrt{n}$ and observe that $x_{n+1}-x_{n}=\frac{1}{\sqrt{n+1}+\sqrt{n}} \rightarrow 0$.
(b) False. For $x_{n}=\sqrt{n},\left|x_{n+2}-x_{n+1}\right|=|\sqrt{n+2}-\sqrt{n+1}|<\frac{1}{\sqrt{n+1}+\sqrt{n}}=\left|x_{n+1}-x_{n}\right|$.
(c) False. Take $x_{n}=\frac{1}{n}$. If for some $\alpha>0,\left|\frac{1}{n+1}-\frac{1}{n}\right| \leq \alpha\left|\frac{1}{n}-\frac{1}{n-1}\right|$ for all $n \in \mathbb{N}$, then $\frac{n-1}{n+1} \leq \alpha$. Allow $n \rightarrow \infty$ to get $\alpha \geq 1$.
15. (a) True. Because $\left|x_{n+1}-x_{n}\right| \nrightarrow 0$ as $n \rightarrow \infty$.
(b) False. Consider $x_{n}=(-1)^{n}$.
16. For $n>m$, we have $\left|x_{n}-x_{m}\right| \leq\left|x_{n}-x_{n-1}\right|+\left|x_{n-1}-x_{n-2}\right|+\cdots+\left|x_{m+1}-x_{m}\right|$

$$
\leq \alpha^{n-1}+\alpha^{n-2}+\cdots+\alpha^{m}=\alpha^{m}\left[1+\alpha+\cdots+\alpha^{n-1-m}\right] \leq \frac{\alpha^{m}}{1-\alpha} \rightarrow 0 \text { as } m \rightarrow \infty
$$

Thus (x_{n}) satisfies the Cauchy criterion.
6. Observe that $\left|x_{n+1}-x_{n}\right| \leq \frac{1}{(n+1)!} \leq\left(\frac{1}{2}\right)^{n}$. Apply Problem 5.
7. Since $1 \leq x_{n} \leq 2, \frac{x_{n+1}}{x_{n}} \geq \frac{1}{2}$. Observe that $x_{n+1}^{2}-x_{n}^{2}=x_{n} x_{n-1}-x_{n}^{2}=x_{n}\left(x_{n-1}-x_{n}\right)$. Thus $\left|x_{n+1}-x_{n}\right|=\left|\frac{x_{n}}{x_{n+1}+x_{n}}\right|\left|x_{n-1}-x_{n}\right| \leq \frac{2}{3}\left|x_{n}-x_{n-1}\right|$.
8. Define $\left[a_{1}, b_{1}\right]=\left[x_{1}, x_{2}\right],\left[a_{2}, b_{2}\right]=\left[x_{3}, x_{2}\right],\left[a_{3}, b_{3}\right]=\left[x_{3}, x_{4}\right],\left[a_{4}, b_{4}\right]=\left[x_{5}, x_{4}\right], \cdots$ and apply the nested interval theorem.
9. Suppose $\left|x_{n}\right| \rightarrow \infty$. If $\left(x_{n_{k}}\right)$ is a subsequence of $\left(x_{n}\right)$, then observe that $\left|x_{n_{k}}\right| \rightarrow \infty$ as $k \rightarrow \infty$. To prove the converse, let $\left|x_{n}\right| \nrightarrow \infty$. Then there exists $M>0$ such that for every $N \in \mathbb{N}$, we find $n>N$ such that $\left|x_{n}\right|<M$. Hence there exists $n_{1}>1$ such that $\left|x_{n_{1}}\right|<M$. Similarly, there exists $n_{2}>n_{1}$ such that $\left|x_{n_{2}}\right|<M$. This way, we find a bounded subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$. Hence by Bolzano-Weierstrass theorem, $\left(x_{n_{k}}\right)$ has a convergent subsequence and therefore $\left(x_{n}\right)$ has a convergent subsequence.
10. Suppose $\left(x_{n}\right)$ is bounded. Then by the Bolzano-Weirestrass theorem, every subsequence of $\left(x_{n}\right)$ has a convergent subsequence. To prove the converse, suppose $\left(x_{n}\right)$ is not bounded then there exists a subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ such that $\left|x_{n_{k}}\right| \rightarrow \infty$. Observe that $\left(x_{n_{k}}\right)$ cannot have a convergent subsequence.
11. (a) Suppose $\left(x_{n}\right)$ has infinitely many peaks. Let n_{1} be the first peak and n_{2} be the second and so on. Thus all the peaks can be listed as $n_{1}<n_{2}<n_{3}<\ldots$. Note that the subsequence $\left(x_{n_{k}}\right)$ is decreasing.
(b) Suppose there are only finite peaks and let N be the last peak. Since $n_{1}=N+1$ is not a peak, there exists $n_{2}>n_{1}$ such that $x_{n_{2}} \geq x_{n_{1}}$. Since $n_{2}>N, n_{2}$ is not a peak and hence there exists $n_{3}>n_{2}$ such that $x_{n_{3}} \geq x_{n_{2}}$. This way, we find an increasing subsequence $\left(x_{n_{k}}\right)$.
(c) This follows immediately from (a) and (b).

