
Practice Problems 4: Cauchy criterion, Bolzano-Weierstrass Theorem

1. Show that (xn) satisfies the Cauchy criterion where (xn) is defined as

(a) x1 = 2 and xn+1 = 2 + 1
xn

for all n ∈ N;

(b) x1 = 1 and xn+1 =
1

2+x2
n
for all n ∈ N;

(c) x1 = 1 and xn+1 =
1
6(x

2
n + 8) for all n ∈ N.

2. Let (xn) satisfy the Cauchy criterion. Show that (xn) is bounded.

3. Let (xn) be a sequence of positive real numbers. Prove or disprove the following statements.

(a) If xn+1 − xn → 0 then (xn) converges.

(b) If |xn+2 − xn+1| < |xn+1 − xn| for all n ∈ N then (xn) converges.

(c) If (xn) satisfies the Cauchy criterion, then there exists an α ∈ R such that 0 < α < 1
and |xn+1 − xn| ≤ α|xn − xn−1| for all n ∈ N.

4. Let (xn) be a sequence of integers such that xn+1 6= xn for all n ∈ N. Prove or disprove the
following statements.

(a) The sequence (xn) does not satisfy the Cauchy criterion.

(b) The sequence (xn) cannot have a convergent subsequence.

5. Suppose that 0 < α < 1 and that (xn) is a sequence satisfying the condition:
|xn+1 − xn| ≤ αn, n = 1, 2, 3, . . . . Show that (xn) satisfies the Cauchy criterion.

6. Let (xn) be defined by x1 =
1
1! , x2 =

1
1! −

1
2! , ..., xn = 1

1! −
1
2! + ...+ (−1)n+1

n! for n ∈ N. Show
that (xn) converges.

7. Let 1 ≤ x1 ≤ x2 ≤ 2 and xn+2 =
√
xn+1xn, for n ∈ N.

(a) Show that xn+1

xn
≥ 1

2 , |xn+1 − xn| ≤ 2
3 |xn − xn−1| for all n ∈ N and (xn) converges.

(b) Observe that x2n+2xn+1 = x2n+1xn for all n ∈ N and find the limit of (xn).

8. Let x1 = 1, x2 = 2 and xn+2 = xn+1+xn

2 for all n ∈ N. Using the nested interval theorem,
show that (xn) converges .

9. (*) Show that a sequence (xn) has no convergent subsequence if and only if |xn| → ∞.

10. (*) Show that a sequence (xn) is bounded if and only if every subsequence of (xn) has a
convergent subsequence.

11. (*) Let (xn) be a sequence in R. We say that a positive integer n is a peak of (xn) if
xn > xm whenever m > n (i.e., if xn is greater than every subsequent term of (xn)).

(a) If (xn) has infinitely many peaks, show that it has a decreasing subsequence.

(b) If (xn) has only finitely many peaks, show that it has an increasing subsequence.

(c) From (a) and (b) conclude that every sequence in R has a monotone subsequence.
Further, conclude that every bounded sequence in R has a convergent subsequence
(This is an alternate proof of the Bolzano-Weierstrass Theorem).

Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.



Practice Problems 4: Hints/Solutions

1. (a) Note that |xn+1 − xn| = | 1
xn

− 1
xn−1

| = |xn−1−xn

xnxn−1
| ≤ 1

4 |xn−1 − xn|. Hence (xn) satisfies
the contractive condition and therefore it satisfies the Cauchy criterion.

(b) Observe that |xn+1 − xn| =
|x2

n−x2
n−1|

(2+x2
n)(2+x2

n−1)
≤ |xn−xn−1||xn+xn−1|

4 ≤ 2
4 |xn − xn−1|.

(c) We have |xn+1 − xn| ≤ |xn−xn−1||xn+xn−1|
6 ≤ 4

6 |xn − xn−1|.

2. Since (xn) satisfies the Cauchy criterion, there exists N ∈ N such that |xn − xN | < 1 for all
n ≥ N . Hence |xn| ≤ max{|x1|, |x2|, · · · , |xN−1|, 1 + |xN |} for all n ∈ N.

3. (a) False. Choose xn =
√
n and observe that xn+1 − xn = 1√

n+1+
√
n
→ 0.

(b) False. For xn =
√
n, |xn+2 − xn+1| = |

√
n+ 2−

√
n+ 1| < 1√

n+1+
√
n
= |xn+1 − xn|.

(c) False. Take xn = 1
n . If for some α > 0, | 1

n+1 − 1
n | ≤ α| 1n − 1

n−1 | for all n ∈ N, then
n−1
n+1 ≤ α. Allow n → ∞ to get α ≥ 1.

4. (a) True. Because |xn+1 − xn| 9 0 as n → ∞.

(b) False. Consider xn = (−1)n.

5. For n > m, we have |xn − xm| ≤ |xn − xn−1|+ |xn−1 − xn−2|+ · · ·+ |xm+1 − xm|
≤ αn−1 + αn−2 + · · · + αm = αm[1 + α + · · · + αn−1−m]≤ αm

1−α → 0 as m → ∞.
Thus (xn) satisfies the Cauchy criterion.

6. Observe that |xn+1 − xn| ≤ 1
(n+1)! ≤ (12)

n. Apply Problem 5.

7. Since 1 ≤ xn ≤ 2, xn+1

xn
≥ 1

2 . Observe that x2n+1−x2n = xnxn−1−x2n = xn(xn−1−xn). Thus

|xn+1 − xn| = | xn
xn+1+xn

||xn−1 − xn| ≤ 2
3 |xn − xn−1|.

8. Define [a1, b1] = [x1, x2], [a2, b2] = [x3, x2], [a3, b3] = [x3, x4], [a4, b4] = [x5, x4], · · · and
apply the nested interval theorem.

9. Suppose |xn| → ∞. If (xnk
) is a subsequence of (xn), then observe that |xnk

| → ∞ as
k → ∞. To prove the converse, let |xn| 9 ∞. Then there exists M > 0 such that for
every N ∈ N, we find n > N such that |xn| < M . Hence there exists n1 > 1 such that
|xn1 | < M . Similarly, there exists n2 > n1 such that |xn2 | < M . This way, we find a
bounded subsequence (xnk

) of (xn). Hence by Bolzano-Weierstrass theorem, (xnk
) has a

convergent subsequence and therefore (xn) has a convergent subsequence.

10. Suppose (xn) is bounded. Then by the Bolzano-Weirestrass theorem, every subsequence of
(xn) has a convergent subsequence. To prove the converse, suppose (xn) is not bounded
then there exists a subsequence (xnk

) of (xn) such that |xnk
| → ∞. Observe that (xnk

)
cannot have a convergent subsequence.

11. (a) Suppose (xn) has infinitely many peaks. Let n1 be the first peak and n2 be the second
and so on. Thus all the peaks can be listed as n1 < n2 < n3 < .... Note that the subsequence
(xnk

) is decreasing.

(b) Suppose there are only finite peaks and let N be the last peak. Since n1 = N + 1 is
not a peak, there exists n2 > n1 such that xn2 ≥ xn1 . Since n2 > N , n2 is not a peak and
hence there exists n3 > n2 such that xn3 ≥ xn2 . This way, we find an increasing subsequence
(xnk

).

(c) This follows immediately from (a) and (b).


