
Practice Problems 6: Limit, Intermediate Value Theorem

1. Let α ∈ R be such that limx→−1
2x2−αx−14
x2−2x−3

exists. Find α and the limit.

2. Let limx→0
f(x)
x2 = 5. Show that limx→0

f(x)
x = 0.

3. Let f : R → R and x0 ∈ R. Suppose lim
x→x0

f(x) exists. Show that lim
x→0

f(x+x0) = lim
x→x0

f(x).

4. Let x0 ∈ I and f : I\{x0} → R. Suppose lim
x→x0

f(x) = L. If L > 0 show that there is δ > 0

such that f(x) > 0 for all x ∈ [(x0 − δ, x0 + δ) ∩ I]\{x0}.

5. Let x0 ∈ I and f, g : I\{x0} → R. Suppose lim
x→x0

f(x) = L and lim
x→x0

g(x) = M . Then

(i) lim
x→x0

(f + g)(x) = L+M ;

(ii) lim
x→x0

(fg)(x) = LM ;

(iii) if L 6= 0, lim
x→x0

( 1f )(x) =
1
L .

6. Let x0 ∈ (a, b) and f : (a, b)\{x0} → R. Then lim
x→x0

f(x) exists if and only if lim
x→x+

0

f(x) and

lim
x→x−

0

f(x) exist and are equal.

7. Give an example of a function f on [0, 1] which is not continuous but it satisfies the in-
termediate value property (in short, IVP) (We say that f has the property IVP on [0, 1] if
for every x, y ∈ [0, 1] and α satisfying f(x) < α < f(y) or f(x) > α > f(y) there exists
x0 ∈ [x, y] such that f(x0) = α).

8. Show that the polynomial x4 + 6x3 − 8 has at least two real roots.

9. Let f : [0, 1] → R be continuous. Show that there exists x0 ∈ [0, 1] such that f(x0) =
1
3(f(

1
4) + f(12) + f(34)).

10. Let f : [0, 1] → R. Suppose that f(x) is rational for irrational x and that f(x) is irrational
for rational x. Show that f cannot be continuous.

11. Let f : R → R be a continuous function such that f(x + 2π) = f(x) for all x ∈ R. Show
that there exists x0 ∈ R such that f(x0 + π) = f(x0).

12. Let f : [0, 1] → R be continuous such that f(0) = f(1). Show that there exists x0 ∈ [0, 12 ]
such that f(x0) = f(x0 +

1
2).

13. Let f, g : [0, 1] → R be continuous such that inf{f(x) : x ∈ [0, 1]} = inf{g(x) : x ∈ [0, 1]}.
Show that there exists x0 ∈ [0, 1] such that f(x0) = g(x0).

14. Let f : R → R be a continuous function. Show that f is a constant function if

(a) f(x) is rational for each x ∈ R.
(b) f(x) is an integer for each x ∈ Q.

15. Show that a polynomial of odd degree with real coefficients has at least one real root.

16. Show that there exists at least one positive real solution to the equation |x31+x8+20| = x32.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.



17. Let f(x) = x2n + a2n−1x
2n−1 + ...+ a1x+ a0 where n ∈ N and ai ∈ R for 0 ≤ i ≤ 2n. Show

that f attains its infimum on R.

18. Let f(x) = anx
n + an−1x

n−1 + ...+ a1x+ a0 where n ∈ N and ai ∈ R for 0 ≤ i ≤ n. If n is
even, an = 1 and a0 = −1, show that f(x) has at least two real roots.

19. A runner runs continuously a eight kilometer race in 40 minutes without taking rest. Show
that, somewhere along the race, the runner must have covered a distance of one kilometer
in exactly 5 minutes.

20. (*) Let f : I → R be a continuous one-one map. Show that f is either strictly increasing
(i.e, f(x) > f(y) whenever x > y) or strictly decreasing.

21. (*) Let f : R → [0,∞) be a bijective map. Show that f is not continuous on R.

22. (*) Let f : R → R be a continuous function.

(a) Suppose f attains each of its values exactly two times. Let f(x1) = f(x2) = α for
some α ∈ R and f(x) > α for some x ∈ [x1, x2]. Show that f attains its maximum in
[x1, x2] exactly at one point.

(b) Using (a) show that f cannot attain each of its values exactly two times.



Practice Problems 6: Hints/Solutions

1. α = 12 and the limit is 4.

2. Note that f(x)
x = f(x)

x2 x for x 6= 0.

3. Let limx→x0 f(x) = M for some M ∈ R. Let xn → 0, xn 6= 0 ∀ n. Then xn+x0 → x0. Since
limx→x0 f(x) = M , f(xn + x0) → M . This implies that limx→0 f(x+ x0) = M .

4. Suppose for every n, there exists xn ∈ (x0 − 1
n , x0 +

1
n) ∩ I such that f(xn) ≤ 0. Then

xn → x0. Since f(xn) → L,L ≤ 0 which is a contradiction.

5. Apply the definition of limit and Theorem 2.1 to get (i) and (ii). Theorem 2.1 and Problem
4 imply (iii).

6. It follows from the definitions that if lim
x→x0

f(x) exists then lim
x→x+

0

f(x) and lim
x→x−

0

f(x) exist

and are equal. To show the converse, let lim
x→x+

0

f(x) = lim
x→x−

0

f(x) = L for some L ∈ R. Let

ε > 0. Then by Theorem 6.3, there exists δ1 > 0 and δ2 > 0 such that

|f(x)− L| < ε whenever x ∈ I, x > x0 and 0 < |x− x0| < δ

and |f(x)− L| < ε whenever x ∈ I, x > x0 and 0 < |x− x0| < δ.

Choose δ = min{δ1, δ2}. Then |f(x) − L| < ε whenever x ∈ I, and 0 < |x − x0| < δ. This
shows that lim

x→x0

f(x) = L.

7. Consider f(0) = 0 and f(x) = sin 1
x for x 6= 0.

8. Note that f(0) < 0, f(2) > 0 and f(−8) > 0. Use the IVT for f on [−8, 0] and f on [0, 2].

9. Let x1, x2 ∈ [0, 1] be such that f(x1) = inf{f(x) : x ∈ [0, 1]} and f(x2) = sup{f(x) : x ∈
[0, 1]}. Note that f(x1) ≤ 1

3(f(
1
4) + f(12) + f(34)) ≤ f(x2). Apply the IVT.

10. Let g be defined by g(x) = f(x) − x ∀ x ∈ [0, 1]. Then g(x) irrational for all x ∈ [0, 1].
Because of the IVT, g cannot be continuous and hence f cannot be continuous.

11. Consider the function g(x) = f(x+π)− f(x) and the values g(0) and g(π). Apply the IVT.

12. Consider the function g(x) = f(x)− f(x+ 1
2) and the values g(0) and g(12). Apply the IVT.

13. Let x1, x2 ∈ [0, 1] be such that f(x1) = inf{f(x) : x ∈ [0, 1]} and g(x2) = inf{g(x) : x ∈
[0, 1]}. Note that f(x1) ≤ g(x1) and f(x2) ≥ g(x2). Let ϕ(x) = f(x) − g(x). Apply the
IVT for ϕ.

14. (a) Suppose f(x) 6= f(y) for some x, y ∈ R. Find an irrational number α between f(x) and
f(y). By the IVT, there exists z ∈ (x, y) such that f(z) = α which is a contradiction.

(b) Let α be irrational. Find rn ∈ Q such that rn → α. By the continuity of f , f(rn) → f(α).
Since each f(rn) is an integer, (f(rn)) has to be eventually a constant sequence and hence
f(α) is an integer. So f takes only integer value for each x ∈ R. By the IVT, f(x) has to
be a constant function.

15. Let p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 where ai ∈ R for 0 ≤ i ≤ n, an 6= 0 and n is
odd. Then p(x) = xn(an + an−1

x + · · · + a1
xn−1 + a0

xn ). If an > 0, then p(x) → ∞ as x → ∞
and p(x) → −∞ as x → −∞. Hence there exists some M > 0 such that p(x) > 0 for all
x > M and p(x) < 0 for all x < −M . Apply the IVT for p on [−M,M ].



16. Let f(x) = 1
x32 |x31+x8+20| − 1. Then f(x) → ∞ as x → 0 and f(x) → −1 as x → ∞. By

the IVT, there exists x0 ∈ (0,∞) such that f(x0) = 0.

17. Note that f(x) → ∞ as x → ∞ or x → −∞. Let α > 0 be such that α > f(y) for some
y ∈ R. Then there exists M > 0 such that f(x) > α for all |x| > M . Since f is continuous
there exists x0 such that f(x0) = inf{f(x) : x ∈ [−M,M ]} = inf{f(x) : x ∈ R}

18. Note that f(0) = −1 and f(x) → ∞ as x → ∞ or x → −∞. Apply the IVT.

19. Let x denote the distance, in kilometers, along the course. Let f : [0, 7] → R, where f(x) =
time taken in minutes to cover the distance from x to x+ 1. Observe that

∑7
i=0 f(i) = 40.

Hence f(i) < 5 or f(i) > 5 is not possible for all i = 0 to 7. Therefore, there exists i, j ∈ [0, 7]
such that f(i) ≤ 5 ≤ f(j). By the IVT there exists c ∈ (i, j) such that f(c) = 5.

20. Case 1: Let I = [a, b]. Assume that f(a) < f(b). Let a < x < b. Since f is one-one, using
the IVT, it is easy to show that f(a) < f(x) < f(b). Let a < x < y < b. Then f(x) < f(y).
To see this, let f(y) < f(x). Then f(y) < f(x) < f(b). By the IVT, there exists x0 ∈ (y, b)
such that f(x0) = f(x) which is a contradiction.

Case 2: Suppose that I is any interval and f is neither strictly increasing nor strictly
decreasing. Then there exist x1, x2, y1, y2 ∈ I such that x1 < x2 but f(x1) ≤ f(x2) and
y1 < y2 but f(y1) ≥ f(y2). Find [a, b] such that x1, x2, y1, y2 ∈ [a, b] and [a, b] ⊂ I. Case I
will lead to a contradiction.

21. If f is continuous, by Problem 21, f is either strictly increasing or strictly decreasing.
Suppose f is strictly increasing. Since f is on-to, there exists x0 such that f(x0) = 0. Then
f(x) < f(x0) for all x < x0 which is a contradiction.

22. (a) Let β = max{f(x) : x ∈ [x1, x2]}. If f attains β on [x1, x2] at more than one point, then
there exists γ ∈ (α, β) such that f attains γ more than twice which is a contradiction.

(b) Suppose f attains each of its values exactly two times. Let x1, x2, α and β be as in
(a). Since f attains β exactly once in [x1, x2], there exits x0 lying outside [x1, x2] such that
f(x0) = β > α. Then, by the IVT, every number in (α, β) is attained by f more than twice
which is a contradiction.


