
Practice Problems 8: Mean Value Theorem, Cauchy Mean Value Theorem, L’Hospital’s Rule

1. Establish the following inequalities using the MVT.

(a) 1
2
√
n+1

<
√
n+ 1−

√
n < 1

2
√
n
for all n ∈ N.

(b) x−1
x < log x < x− 1 for x > 1.

(c) ex ≥ ex for all x ∈ R.

2. Does there exist a differentiable function f : [0, 2] → R satisfying f(0) = −1, f(2) = 4 and
f ′(x) ≤ 2 for all x ∈ [0, 2]?

3. Let f be twice differentiable on [0, 2]. Suppose that f(0) = 0, f(1) = 2 and f(2) = 4. Show
that there is x0 ∈ (0, 2) such that f ′′(x0) = 0.

4. Let a > 0 and f : [−a, a] → R be differentiable. Suppose that f ′(x) ≤ 1 for all x ∈ (−a, a).
If f(a) = a and f(−a) = −a, then show that f(x) = x for every x ∈ (−a, a).

5. Let f : [0, 1] → R be twice differentiable. Suppose that the line segment joining the points
(0, f(0)) and (1, f(1)) intersect the graph of f at a point (a, f(a)) where 0 < a < 1. Show
that there exists x0 ∈ [0, 1] such that f ′′(x0) = 0.

6. Let f : [0, 1] → R be continuous. Suppose that f is differentiable on (0, 1) and limx→0 f
′(x) =

α for some α ∈ R. Show that f ′(0) exists and f ′(0) = α.

7. Let f : [0, 1] → R be differentiable and f(0) = 0. Suppose that |f ′(x)| ≤ |f(x)| for all
x ∈ [0, 1]. Show that f(x) = 0 for all x ∈ [0, 1].

8. Let f : [0,∞) → R be continuous and f(0) = 0. Suppose that f ′(x) exists for all x ∈ (0,∞)

and f ′ is increasing on (0,∞). Show that the function g(x) = f(x)
x is increasing on (0,∞).

9. Establish the following inequalities.

(a) For α > 1, (1 + x)α ≥ 1 + αx for all x > −1.

(b) For x > 0, e log x ≤ x.

10. Let a > 0 and f : [a, b] → R be differentiable. Show that there exists c ∈ (a, b) such that
bf(a)−af(b)

b−a = f(c)− cf ′(c).

11. Let f : [a, b] → R be differentiable and a ≥ 0. Using the Cauchy mean value theorem, show

that there exist c1, c2 ∈ (a, b) such that f ′(c1)
a+b = f ′(c2)

2c2
.

12. Evaluate the following limits using L’Hospital’s Rule.

(a) lim
x→0+

( 1
sin x − 1

x).

(b) lim
x→∞

(ex + x)1/x.

(c) lim
x→∞

(log x− x).

(d) lim
x→0+

(cosx)1/x.

(e) lim
x→0+

(sinx)
√
x.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.



13. Let f : (0,∞) → [1,∞) be differentiable. Suppose that lim
x→∞

(f(x) + f ′(x)) = ` for some

` ∈ R. Using L’Hospital’s rule, show that lim
x→∞

f(x) = `.

14. Let f : R → R be such that f ′′(c) exists at some c ∈ R. Using L’Hospital’s Rule, show that

lim
h→0

f(c+ h)− 2f(c) + f(c− h)

h2
= f ′′(c).

Give an example of a function f and a point c such that the above limit exists but f is not
twice differentiable at c.

15. (*) Let f : [a, b] → R be differentiable. If f ′(x) 6= 0 for all x ∈ [a, b], then show that either
f ′(x) > 0 for all x ∈ [a, b] or f ′(x) < 0 for all x ∈ [a, b].

16. (*) Let f : [a, b] → R be such that f ′(x) 6= 0 for all x ∈ [a, b] and J = {f(x) : x ∈ [a, b]}.
Show that f−1 : J → [a, b] is differentiable and (f−1)′(f(x)) = 1

f ′(x) for all x ∈ [a, b].



Practice Problems 8: Hints/Solutions

1. (a) By the MVT, there exists c ∈ (n, n+ 1) such that
√
n+ 1−

√
n = 1

2
√
c
.

(b) By the MVT, there exists c ∈ (1, x) such that log x− ln 1 = 1
c (x− 1).

(c) By the MVT (see Application 7.3), ex ≥ 1+x for all x ∈ R. That is, ex−1 ≥ 1+(x−1).

2. If so, then by the MVT there exits c ∈ (0, 2) such that 5 = f(2)− f(0) = 2f ′(c).

3. By the MVT there exist x1 ∈ (0, 1) and x2 ∈ (1, 2) such that f ′(x1) = f(1) − f(0) =
2 and f ′(x2) = f(2)− f(1) = 2. Apply Rolle’s theorem for f ′ on [x1, x2]

4. Let g(x) = f(x) − x for all x ∈ [−a, a]. Note that g′(x) ≤ 0 on (−a, a). Therefore, g is
decreasing. Since g(a) = g(−a) = 0, we have g = 0.

5. Using the MVT on [0, a] and [a, 1], obtain b ∈ (0, a) and c ∈ (a, 1) such that f(a)−f(0)
a−0 = f ′(b)

and f(1)−f(a)
1−a = f ′(c). Note that f ′(b) = f ′(c) because they are slopes of the same chord.

By Rolle’s theorem there exists x0 ∈ (b, c) such that f ′′(x0) = 0.

6. Let x ∈ (0, 1]. By the MVT, there exists cx ∈ (0, x) such that f(x)−f(0)
x = f ′(cx). Now

f ′(0) = limx→0
f(x)−f(0)

x = limx→0 f
′(cx) = limcx→0 f

′(cx) = α.

7. For x ∈ (0, 1), by the MVT, there exists x1 such that 0 < x1 < x and f(x) = f ′(x1)x.
This implies that |f(x)| ≤ x|f(x1)|. Similarly there exists x2 such that 0 < x2 < x1 and
|f(x1)| ≤ x1|f(x2)|. Therefore |f(x)| ≤ x2|f(x2)|. Find a sequence (xn) in (0, 1) such that
|f(x)| ≤ xn|f(xn)|. Since f is bounded on [0, 1], xn|f(xn)| → 0. Hence f(x) = 0.

8. Note that g′(x) = xf ′(x)−f(x)
x2 =

f ′(x)− f(x)
x

x . Observe that, by the MVT, f(x)
x = f ′(cx) for

some cx ∈ (0, x). Since f ′ is increasing, g′(x) ≥ 0. Hence g is increasing.

9. (a) Let α > 1 and f(x) = (1 + x)α − (1 + αx) on (−1,∞). Then f ′(x) ≤ 0 on (−1, 0] and
f ′(x) ≥ 0 on [0,∞). Hence f(x) ≥ f(0) = 0 on (−1, 0] and f(x) ≥ f(0) = 0 on [0,∞).
Therefore f(x) ≥ 0 on (−1,∞).

(b) Define f(x) = x − e logx on (0,∞). Then f ′(x) = x−e
x . Therefore f ′(x) > 0 on (e,∞)

and f ′(x) < 0 on (0, e). Hence f(x) > f(e) for all x ∈ (0,∞) and x 6= e.

10. Observe that bf(a)−af(b)
b−a =

f(b)
b

− f(a)
a

1
b
− 1

a

. Apply the CMVT to f(x)
x and 1

x .

11. Apply the CMVT to f(x) and g1(x) = x. Again apply to f(x) and g2(x) = x2.

12. (a) We have lim
x→0+

( 1
sin x − 1

x) = lim
x→0+

x−sin x
x sin x = lim

x→0+
1−cos x

sin x+x cos x = lim
x→0+

sin x
2 cos x−x sin x = 0.

(b) Note that log( lim
x→∞

(ex + x)1/x) = lim
x→∞

log(ex + x)1/x = lim
x→∞

log(ex+x)
x = 1. Thus

lim
x→∞

(ex + x)1/x = e.

(c) Observe that log x− x = log(xe−x) and lim
x→∞

x
ex = 0. Thus lim

x→∞
(log x− x) = −∞.

(d) Since log( lim
x→+

(cosx)
1
x ) = lim

x→0+
log((cosx)

1
x ) = lim

x→0+

log(cos x)
x = lim

x→0+
(− tanx) = 0,

lim
x→0+

(cosx)
1
x = e0 = 1.

(e) Since log( lim
x→0+

(sinx)
√
x) = lim

x→0+

log(sin x)
1/

√
x

= −2 lim
x→0+

x
3
2 cos x
sin x and

lim
x→0+

x
3
2 cos x
sin x = ( lim

x→0+

√
x cosx)( lim

x→0+
x

sin x) = 0, lim
x→0+

(sinx)
√
x = e0 = 1.



13. Observe that f(x) = exf(x)
ex . Apply L’Hospital’s Rule.

14. Since f ′′(c) exists, there exists a δ > 0 such that f ′(x) exists on (c − δ, c + δ). Therefore,

by L’Hospital’s Rule, the given limit is equal to limh→0
f ′(c+h)−f ′(c−h)

2h if it exists. But

limh→0
f ′(c+h)−f ′(c−h)

2h = 1
2

[
limh→0

f ′(c+h)−f ′(c)
h + limh→0

f ′(c−h)−f ′(c)
−h

]
= 1

2 [f
′′(c) + f ′′(c)].

Let f(x) = 1 on (0,∞), f(0) = 0 and f(x) = −1 on (−∞, 0). Then f is not continuous at
0 hence f ′′(0) does not exist. It can be easily verified that the limit given in the question
exists.

15. Since f is one-one (see Application 7.2), it is either strictly increasing or strictly decreasing
(see Problem 20 of PP 6). Hence either f ′(x) ≥ 0 for all x ∈ [a, b] or f ′(x) ≤ 0 for all
x ∈ [a, b]. This problem can also be solved using Problem 18 in PP 7.

16. First note that f is one-one as f ′(x) 6= 0 for all x ∈ [a, b] (See Application 7.2). Let y0 ∈ J
and y0 = f(x0) for some x0 ∈ [a, b]. Let (yn) be any arbitrary sequence in J such that
yn 6= y0 for all n, yn → y0 and yn = f(xn) for some xn ∈ [a, b]. Since f−1 is continuous (see
Problem 16 in PP5) and f−1 is also one-one, we have xn → x0 and xn 6= x0 for all n. Now

lim
n→∞

f−1(yn)− f−1(y0)

yn − y0
= lim

n→∞

xn − x0
f(xn)− f(x0)

= lim
n→∞

1
f(xn)−f(x0)

xn−x0

=
1

f ′(x0)
.


