1. Establish the following inequalities using the MVT.
(a) $\frac{1}{2 \sqrt{n+1}}<\sqrt{n+1}-\sqrt{n}<\frac{1}{2 \sqrt{n}}$ for all $n \in \mathbb{N}$.
(b) $\frac{x-1}{x}<\log x<x-1$ for $x>1$.
(c) $e^{x} \geq e x$ for all $x \in \mathbb{R}$.
2. Does there exist a differentiable function $f:[0,2] \rightarrow \mathbb{R}$ satisfying $f(0)=-1, f(2)=4$ and $f^{\prime}(x) \leq 2$ for all $x \in[0,2] ?$
3. Let f be twice differentiable on $[0,2]$. Suppose that $f(0)=0, f(1)=2$ and $f(2)=4$. Show that there is $x_{0} \in(0,2)$ such that $f^{\prime \prime}\left(x_{0}\right)=0$.
4. Let $a>0$ and $f:[-a, a] \rightarrow \mathbb{R}$ be differentiable. Suppose that $f^{\prime}(x) \leq 1$ for all $x \in(-a, a)$. If $f(a)=a$ and $f(-a)=-a$, then show that $f(x)=x$ for every $x \in(-a, a)$.
5. Let $f:[0,1] \rightarrow \mathbb{R}$ be twice differentiable. Suppose that the line segment joining the points $(0, f(0))$ and $(1, f(1))$ intersect the graph of f at a point $(a, f(a))$ where $0<a<1$. Show that there exists $x_{0} \in[0,1]$ such that $f^{\prime \prime}\left(x_{0}\right)=0$.
6. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous. Suppose that f is differentiable on $(0,1)$ and $\lim _{x \rightarrow 0} f^{\prime}(x)=$ α for some $\alpha \in \mathbb{R}$. Show that $f^{\prime}(0)$ exists and $f^{\prime}(0)=\alpha$.
7. Let $f:[0,1] \rightarrow \mathbb{R}$ be differentiable and $f(0)=0$. Suppose that $\left|f^{\prime}(x)\right| \leq|f(x)|$ for all $x \in[0,1]$. Show that $f(x)=0$ for all $x \in[0,1]$.
8. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be continuous and $f(0)=0$. Suppose that $f^{\prime}(x)$ exists for all $x \in(0, \infty)$ and f^{\prime} is increasing on $(0, \infty)$. Show that the function $g(x)=\frac{f(x)}{x}$ is increasing on $(0, \infty)$.
9. Establish the following inequalities.
(a) For $\alpha>1,(1+x)^{\alpha} \geq 1+\alpha x$ for all $x>-1$.
(b) For $x>0, e \log x \leq x$.
10. Let $a>0$ and $f:[a, b] \rightarrow \mathbb{R}$ be differentiable. Show that there exists $c \in(a, b)$ such that $\frac{b f(a)-a f(b)}{b-a}=f(c)-c f^{\prime}(c)$.
11. Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable and $a \geq 0$. Using the Cauchy mean value theorem, show that there exist $c_{1}, c_{2} \in(a, b)$ such that $\frac{f^{\prime}\left(c_{1}\right)}{a+b}=\frac{f^{\prime}\left(c_{2}\right)}{2 c_{2}}$.
12. Evaluate the following limits using L'Hospital's Rule.
(a) $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{\sin x}-\frac{1}{x}\right)$.
(b) $\lim _{x \rightarrow \infty}\left(e^{x}+x\right)^{1 / x}$.
(c) $\lim _{x \rightarrow \infty}(\log x-x)$.
(d) $\lim _{x \rightarrow 0^{+}}(\cos x)^{1 / x}$.
(e) $\lim _{x \rightarrow 0^{+}}(\sin x)^{\sqrt{x}}$.
13. Let $f:(0, \infty) \rightarrow[1, \infty)$ be differentiable. Suppose that $\lim _{x \rightarrow \infty}\left(f(x)+f^{\prime}(x)\right)=\ell$ for some $\ell \in \mathbb{R}$. Using L'Hospital's rule, show that $\lim _{x \rightarrow \infty} f(x)=\ell$.
14. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that $f^{\prime \prime}(c)$ exists at some $c \in \mathbb{R}$. Using L'Hospital's Rule, show that

$$
\lim _{h \rightarrow 0} \frac{f(c+h)-2 f(c)+f(c-h)}{h^{2}}=f^{\prime \prime}(c)
$$

Give an example of a function f and a point c such that the above limit exists but f is not twice differentiable at c.
15. (*) Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable. If $f^{\prime}(x) \neq 0$ for all $x \in[a, b]$, then show that either $f^{\prime}(x)>0$ for all $x \in[a, b]$ or $f^{\prime}(x)<0$ for all $x \in[a, b]$.
16. (*) Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{\prime}(x) \neq 0$ for all $x \in[a, b]$ and $J=\{f(x): x \in[a, b]\}$. Show that $f^{-1}: J \rightarrow[a, b]$ is differentiable and $\left(f^{-1}\right)^{\prime}(f(x))=\frac{1}{f^{\prime}(x)}$ for all $x \in[a, b]$.

1. (a) By the MVT, there exists $c \in(n, n+1)$ such that $\sqrt{n+1}-\sqrt{n}=\frac{1}{2 \sqrt{c}}$.
(b) By the MVT, there exists $c \in(1, x)$ such that $\log x-\ln 1=\frac{1}{c}(x-1)$.
(c) By the MVT (see Application 7.3), $e^{x} \geq 1+x$ for all $x \in \mathbb{R}$. That is, $e^{x-1} \geq 1+(x-1)$.
2. If so, then by the MVT there exits $c \in(0,2)$ such that $5=f(2)-f(0)=2 f^{\prime}(c)$.
3. By the MVT there exist $x_{1} \in(0,1)$ and $x_{2} \in(1,2)$ such that $f^{\prime}\left(x_{1}\right)=f(1)-f(0)=$ 2 and $f^{\prime}\left(x_{2}\right)=f(2)-f(1)=2$. Apply Rolle's theorem for f^{\prime} on $\left[x_{1}, x_{2}\right]$
4. Let $g(x)=f(x)-x$ for all $x \in[-a, a]$. Note that $g^{\prime}(x) \leq 0$ on $(-a, a)$. Therefore, g is decreasing. Since $g(a)=g(-a)=0$, we have $g=0$.
5. Using the MVT on $[0, a]$ and $[a, 1]$, obtain $b \in(0, a)$ and $c \in(a, 1)$ such that $\frac{f(a)-f(0)}{a-0}=f^{\prime}(b)$ and $\frac{f(1)-f(a)}{1-a}=f^{\prime}(c)$. Note that $f^{\prime}(b)=f^{\prime}(c)$ because they are slopes of the same chord. By Rolle's theorem there exists $x_{0} \in(b, c)$ such that $f^{\prime \prime}\left(x_{0}\right)=0$.
6. Let $x \in(0,1]$. By the MVT, there exists $c_{x} \in(0, x)$ such that $\frac{f(x)-f(0)}{x}=f^{\prime}\left(c_{x}\right)$. Now $f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}=\lim _{x \rightarrow 0} f^{\prime}\left(c_{x}\right)=\lim _{c_{x} \rightarrow 0} f^{\prime}\left(c_{x}\right)=\alpha$.
7. For $x \in(0,1)$, by the MVT, there exists x_{1} such that $0<x_{1}<x$ and $f(x)=f^{\prime}\left(x_{1}\right) x$. This implies that $|f(x)| \leq x\left|f\left(x_{1}\right)\right|$. Similarly there exists x_{2} such that $0<x_{2}<x_{1}$ and $\left|f\left(x_{1}\right)\right| \leq x_{1}\left|f\left(x_{2}\right)\right|$. Therefore $|f(x)| \leq x^{2}\left|f\left(x_{2}\right)\right|$. Find a sequence $\left(x_{n}\right)$ in $(0,1)$ such that $|f(x)| \leq x^{n}\left|f\left(x_{n}\right)\right|$. Since f is bounded on $[0,1], x^{n}\left|f\left(x_{n}\right)\right| \rightarrow 0$. Hence $f(x)=0$.
8. Note that $g^{\prime}(x)=\frac{x f^{\prime}(x)-f(x)}{x^{2}}=\frac{f^{\prime}(x)-\frac{f(x)}{x}}{x}$. Observe that, by the MVT, $\frac{f(x)}{x}=f^{\prime}\left(c_{x}\right)$ for some $c_{x} \in(0, x)$. Since f^{\prime} is increasing, $g^{\prime}(x) \geq 0$. Hence g is increasing.
9. (a) Let $\alpha>1$ and $f(x)=(1+x)^{\alpha}-(1+\alpha x)$ on $(-1, \infty)$. Then $f^{\prime}(x) \leq 0$ on $(-1,0]$ and $f^{\prime}(x) \geq 0$ on $[0, \infty)$. Hence $f(x) \geq f(0)=0$ on $(-1,0]$ and $f(x) \geq f(0)=0$ on $[0, \infty)$. Therefore $f(x) \geq 0$ on $(-1, \infty)$.
(b) Define $f(x)=x-e \log x$ on $(0, \infty)$. Then $f^{\prime}(x)=\frac{x-e}{x}$. Therefore $f^{\prime}(x)>0$ on (e, ∞) and $f^{\prime}(x)<0$ on $(0, e)$. Hence $f(x)>f(e)$ for all $x \in(0, \infty)$ and $x \neq e$.
10. Observe that $\frac{b f(a)-a f(b)}{b-a}=\frac{\frac{f(b)}{b}-\frac{f(a)}{a}}{\frac{1}{b}-\frac{1}{a}}$. Apply the CMVT to $\frac{f(x)}{x}$ and $\frac{1}{x}$.
11. Apply the CMVT to $f(x)$ and $g_{1}(x)=x$. Again apply to $f(x)$ and $g_{2}(x)=x^{2}$.
12. (a) We have $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{\sin x}-\frac{1}{x}\right)=\lim _{x \rightarrow 0^{+}} \frac{x-\sin x}{x \sin x}=\lim _{x \rightarrow 0^{+}} \frac{1-\cos x}{\sin x+x \cos x}=\lim _{x \rightarrow 0^{+}} \frac{\sin x}{2 \cos x-x \sin x}=0$.
(b) Note that $\log \left(\lim _{x \rightarrow \infty}\left(e^{x}+x\right)^{1 / x}\right)=\lim _{x \rightarrow \infty} \log \left(e^{x}+x\right)^{1 / x}=\lim _{x \rightarrow \infty} \frac{\log \left(e^{x}+x\right)}{x}=1$. Thus $\lim _{x \rightarrow \infty}\left(e^{x}+x\right)^{1 / x}=e$.
(c) Observe that $\log x-x=\log \left(x e^{-x}\right)$ and $\lim _{x \rightarrow \infty} \frac{x}{e^{x}}=0$. Thus $\lim _{x \rightarrow \infty}(\log x-x)=-\infty$.
(d) Since $\log \left(\lim _{x \rightarrow+}(\cos x)^{\frac{1}{x}}\right)=\lim _{x \rightarrow 0^{+}} \log \left((\cos x)^{\frac{1}{x}}\right)=\lim _{x \rightarrow 0^{+}} \frac{\log (\cos x)}{x}=\lim _{x \rightarrow 0^{+}}(-\tan x)=0$, $\lim _{x \rightarrow 0^{+}}(\cos x)^{\frac{1}{x}}=e^{0}=1$.
(e) Since $\log \left(\lim _{x \rightarrow 0^{+}}(\sin x)^{\sqrt{x}}\right)=\lim _{x \rightarrow 0^{+}} \frac{\log (\sin x)}{1 / \sqrt{x}}=-2 \lim _{x \rightarrow 0^{+}} \frac{x^{\frac{3}{2}} \cos x}{\sin x}$ and $\lim _{x \rightarrow 0^{+}} \frac{x^{\frac{3}{2}} \cos x}{\sin x}=\left(\lim _{x \rightarrow 0^{+}} \sqrt{x} \cos x\right)\left(\lim _{x \rightarrow 0^{+}} \frac{x}{\sin x}\right)=0, \lim _{x \rightarrow 0^{+}}(\sin x)^{\sqrt{x}}=e^{0}=1$.
13. Observe that $f(x)=\frac{e^{x} f(x)}{e^{x}}$. Apply L'Hospital's Rule.
14. Since $f^{\prime \prime}(c)$ exists, there exists a $\delta>0$ such that $f^{\prime}(x)$ exists on $(c-\delta, c+\delta)$. Therefore, by L'Hospital's Rule, the given limit is equal to $\lim _{h \rightarrow 0} \frac{f^{\prime}(c+h)-f^{\prime}(c-h)}{2 h}$ if it exists. But $\lim _{h \rightarrow 0} \frac{f^{\prime}(c+h)-f^{\prime}(c-h)}{2 h}=\frac{1}{2}\left[\lim _{h \rightarrow 0} \frac{f^{\prime}(c+h)-f^{\prime}(c)}{h}+\lim _{h \rightarrow 0} \frac{f^{\prime}(c-h)-f^{\prime}(c)}{-h}\right]=\frac{1}{2}\left[f^{\prime \prime}(c)+f^{\prime \prime}(c)\right]$. Let $f(x)=1$ on $(0, \infty), f(0)=0$ and $f(x)=-1$ on $(-\infty, 0)$. Then f is not continuous at 0 hence $f^{\prime \prime}(0)$ does not exist. It can be easily verified that the limit given in the question exists.
15. Since f is one-one (see Application 7.2), it is either strictly increasing or strictly decreasing (see Problem 20 of PP 6). Hence either $f^{\prime}(x) \geq 0$ for all $x \in[a, b]$ or $f^{\prime}(x) \leq 0$ for all $x \in[a, b]$. This problem can also be solved using Problem 18 in PP 7.
16. First note that f is one-one as $f^{\prime}(x) \neq 0$ for all $x \in[a, b]$ (See Application 7.2). Let $y_{0} \in J$ and $y_{0}=f\left(x_{0}\right)$ for some $x_{0} \in[a, b]$. Let (y_{n}) be any arbitrary sequence in J such that $y_{n} \neq y_{0}$ for all $n, y_{n} \rightarrow y_{0}$ and $y_{n}=f\left(x_{n}\right)$ for some $x_{n} \in[a, b]$. Since f^{-1} is continuous (see Problem 16 in PP5) and f^{-1} is also one-one, we have $x_{n} \rightarrow x_{0}$ and $x_{n} \neq x_{0}$ for all n. Now

$$
\lim _{n \rightarrow \infty} \frac{f^{-1}\left(y_{n}\right)-f^{-1}\left(y_{0}\right)}{y_{n}-y_{0}}=\lim _{n \rightarrow \infty} \frac{x_{n}-x_{0}}{f\left(x_{n}\right)-f\left(x_{0}\right)}=\lim _{n \rightarrow \infty} \frac{1}{\frac{f\left(x_{n}\right)-f\left(x_{0}\right)}{x_{n}-x_{0}}}=\frac{1}{f^{\prime}\left(x_{0}\right)} .
$$

