1. Establish the following inequalities using the MVT.

(a)
$$\frac{1}{2\sqrt{n+1}} < \sqrt{n+1} - \sqrt{n} < \frac{1}{2\sqrt{n}}$$
 for all $n \in \mathbb{N}$.
(b) $\frac{x-1}{x} < \log x < x - 1$ for $x > 1$.
(c) $e^x \ge ex$ for all $x \in \mathbb{R}$.

- 2. Does there exist a differentiable function $f : [0,2] \to \mathbb{R}$ satisfying f(0) = -1, f(2) = 4 and $f'(x) \leq 2$ for all $x \in [0,2]$?
- 3. Let f be twice differentiable on [0, 2]. Suppose that f(0) = 0, f(1) = 2 and f(2) = 4. Show that there is $x_0 \in (0, 2)$ such that $f''(x_0) = 0$.
- 4. Let a > 0 and $f : [-a, a] \to \mathbb{R}$ be differentiable. Suppose that $f'(x) \le 1$ for all $x \in (-a, a)$. If f(a) = a and f(-a) = -a, then show that f(x) = x for every $x \in (-a, a)$.
- 5. Let $f: [0,1] \to \mathbb{R}$ be twice differentiable. Suppose that the line segment joining the points (0, f(0)) and (1, f(1)) intersect the graph of f at a point (a, f(a)) where 0 < a < 1. Show that there exists $x_0 \in [0,1]$ such that $f''(x_0) = 0$.
- 6. Let $f : [0,1] \to \mathbb{R}$ be continuous. Suppose that f is differentiable on (0,1) and $\lim_{x\to 0} f'(x) = \alpha$ for some $\alpha \in \mathbb{R}$. Show that f'(0) exists and $f'(0) = \alpha$.
- 7. Let $f : [0,1] \to \mathbb{R}$ be differentiable and f(0) = 0. Suppose that $|f'(x)| \le |f(x)|$ for all $x \in [0,1]$. Show that f(x) = 0 for all $x \in [0,1]$.
- 8. Let $f:[0,\infty) \to \mathbb{R}$ be continuous and f(0) = 0. Suppose that f'(x) exists for all $x \in (0,\infty)$ and f' is increasing on $(0,\infty)$. Show that the function $g(x) = \frac{f(x)}{x}$ is increasing on $(0,\infty)$.
- 9. Establish the following inequalities.
 - (a) For $\alpha > 1$, $(1+x)^{\alpha} \ge 1 + \alpha x$ for all x > -1.
 - (b) For x > 0, $e \log x \le x$.
- 10. Let a > 0 and $f : [a, b] \to \mathbb{R}$ be differentiable. Show that there exists $c \in (a, b)$ such that $\frac{bf(a)-af(b)}{b-a} = f(c) cf'(c)$.
- 11. Let $f : [a, b] \to \mathbb{R}$ be differentiable and $a \ge 0$. Using the Cauchy mean value theorem, show that there exist $c_1, c_2 \in (a, b)$ such that $\frac{f'(c_1)}{a+b} = \frac{f'(c_2)}{2c_2}$.
- 12. Evaluate the following limits using L'Hospital's Rule.

(a)
$$\lim_{x \to 0^+} (\frac{1}{\sin x} - \frac{1}{x}).$$

(b) $\lim_{x \to \infty} (e^x + x)^{1/x}.$

- (c) $\lim_{x \to \infty} (\log x x).$
- (d) $\lim_{x \to 0^+} (\cos x)^{1/x}$.
- (e) $\lim_{x \to 0^+} (\sin x)^{\sqrt{x}}$.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.

- 13. Let $f: (0,\infty) \to [1,\infty)$ be differentiable. Suppose that $\lim_{x\to\infty} (f(x) + f'(x)) = \ell$ for some $\ell \in \mathbb{R}$. Using L'Hospital's rule, show that $\lim_{x\to\infty} f(x) = \ell$.
- 14. Let $f : \mathbb{R} \to \mathbb{R}$ be such that f''(c) exists at some $c \in \mathbb{R}$. Using L'Hospital's Rule, show that

$$\lim_{h \to 0} \frac{f(c+h) - 2f(c) + f(c-h)}{h^2} = f''(c).$$

Give an example of a function f and a point c such that the above limit exists but f is not twice differentiable at c.

- 15. (*) Let $f : [a, b] \to \mathbb{R}$ be differentiable. If $f'(x) \neq 0$ for all $x \in [a, b]$, then show that either f'(x) > 0 for all $x \in [a, b]$ or f'(x) < 0 for all $x \in [a, b]$.
- 16. (*) Let $f : [a,b] \to \mathbb{R}$ be such that $f'(x) \neq 0$ for all $x \in [a,b]$ and $J = \{f(x) : x \in [a,b]\}$. Show that $f^{-1} : J \to [a,b]$ is differentiable and $(f^{-1})'(f(x)) = \frac{1}{f'(x)}$ for all $x \in [a,b]$.

Practice Problems 8: Hints/Solutions

- 1. (a) By the MVT, there exists $c \in (n, n+1)$ such that $\sqrt{n+1} \sqrt{n} = \frac{1}{2\sqrt{c}}$.
 - (b) By the MVT, there exists $c \in (1, x)$ such that $\log x \ln 1 = \frac{1}{c}(x 1)$.
 - (c) By the MVT (see Application 7.3), $e^x \ge 1 + x$ for all $x \in \mathbb{R}$. That is, $e^{x-1} \ge 1 + (x-1)$.
- 2. If so, then by the MVT there exits $c \in (0,2)$ such that 5 = f(2) f(0) = 2f'(c).
- 3. By the MVT there exist $x_1 \in (0,1)$ and $x_2 \in (1,2)$ such that $f'(x_1) = f(1) f(0) = 2$ and $f'(x_2) = f(2) f(1) = 2$. Apply Rolle's theorem for f' on $[x_1, x_2]$
- 4. Let g(x) = f(x) x for all $x \in [-a, a]$. Note that $g'(x) \leq 0$ on (-a, a). Therefore, g is decreasing. Since g(a) = g(-a) = 0, we have g = 0.
- 5. Using the MVT on [0, a] and [a, 1], obtain $b \in (0, a)$ and $c \in (a, 1)$ such that $\frac{f(a)-f(0)}{a-0} = f'(b)$ and $\frac{f(1)-f(a)}{1-a} = f'(c)$. Note that f'(b) = f'(c) because they are slopes of the same chord. By Rolle's theorem there exists $x_0 \in (b, c)$ such that $f''(x_0) = 0$.
- 6. Let $x \in (0,1]$. By the MVT, there exists $c_x \in (0,x)$ such that $\frac{f(x)-f(0)}{x} = f'(c_x)$. Now $f'(0) = \lim_{x \to 0} \frac{f(x)-f(0)}{x} = \lim_{x \to 0} f'(c_x) = \lim_{x \to 0} f'(c_x) = \alpha$.
- 7. For $x \in (0,1)$, by the MVT, there exists x_1 such that $0 < x_1 < x$ and $f(x) = f'(x_1)x$. This implies that $|f(x)| \le x|f(x_1)|$. Similarly there exists x_2 such that $0 < x_2 < x_1$ and $|f(x_1)| \le x_1|f(x_2)|$. Therefore $|f(x)| \le x^2|f(x_2)|$. Find a sequence (x_n) in (0,1) such that $|f(x)| \le x^n |f(x_n)|$. Since f is bounded on $[0,1], x^n |f(x_n)| \to 0$. Hence f(x) = 0.
- 8. Note that $g'(x) = \frac{xf'(x) f(x)}{x^2} = \frac{f'(x) \frac{f(x)}{x}}{x}$. Observe that, by the MVT, $\frac{f(x)}{x} = f'(c_x)$ for some $c_x \in (0, x)$. Since f' is increasing, $g'(x) \ge 0$. Hence g is increasing.
- 9. (a) Let $\alpha > 1$ and $f(x) = (1 + x)^{\alpha} (1 + \alpha x)$ on $(-1, \infty)$. Then $f'(x) \le 0$ on (-1, 0] and $f'(x) \ge 0$ on $[0, \infty)$. Hence $f(x) \ge f(0) = 0$ on (-1, 0] and $f(x) \ge f(0) = 0$ on $[0, \infty)$. Therefore $f(x) \ge 0$ on $(-1, \infty)$.

(b) Define $f(x) = x - e \log x$ on $(0, \infty)$. Then $f'(x) = \frac{x-e}{x}$. Therefore f'(x) > 0 on (e, ∞) and f'(x) < 0 on (0, e). Hence f(x) > f(e) for all $x \in (0, \infty)$ and $x \neq e$.

- 10. Observe that $\frac{bf(a)-af(b)}{b-a} = \frac{\frac{f(b)}{b} \frac{f(a)}{a}}{\frac{1}{b} \frac{1}{a}}$. Apply the CMVT to $\frac{f(x)}{x}$ and $\frac{1}{x}$.
- 11. Apply the CMVT to f(x) and $g_1(x) = x$. Again apply to f(x) and $g_2(x) = x^2$.

12. (a) We have
$$\lim_{x \to 0^+} \left(\frac{1}{\sin x} - \frac{1}{x}\right) = \lim_{x \to 0^+} \frac{x - \sin x}{x \sin x} = \lim_{x \to 0^+} \frac{1 - \cos x}{\sin x + x \cos x} = \lim_{x \to 0^+} \frac{\sin x}{2 \cos x - x \sin x} = 0.$$

- (b) Note that $\log(\lim_{x \to \infty} (e^x + x)^{1/x}) = \lim_{x \to \infty} \log(e^x + x)^{1/x} = \lim_{x \to \infty} \frac{\log(e^x + x)}{x} = 1$. Thus $\lim_{x \to \infty} (e^x + x)^{1/x} = e$.
- (c) Observe that $\log x x = \log(xe^{-x})$ and $\lim_{x \to \infty} \frac{x}{e^x} = 0$. Thus $\lim_{x \to \infty} (\log x x) = -\infty$.
- (d) Since $\log(\lim_{x \to +} (\cos x)^{\frac{1}{x}}) = \lim_{x \to 0^+} \log((\cos x)^{\frac{1}{x}}) = \lim_{x \to 0^+} \frac{\log(\cos x)}{x} = \lim_{x \to 0^+} (-\tan x) = 0,$ $\lim_{x \to 0^+} (\cos x)^{\frac{1}{x}} = e^0 = 1.$
- (e) Since $\log(\lim_{x \to 0^+} (\sin x)^{\sqrt{x}}) = \lim_{x \to 0^+} \frac{\log(\sin x)}{1/\sqrt{x}} = -2 \lim_{x \to 0^+} \frac{x^{\frac{3}{2}} \cos x}{\sin x}$ and $\lim_{x \to 0^+} \frac{x^{\frac{3}{2}} \cos x}{\sin x} = (\lim_{x \to 0^+} \sqrt{x} \cos x)(\lim_{x \to 0^+} \frac{x}{\sin x}) = 0, \lim_{x \to 0^+} (\sin x)^{\sqrt{x}} = e^0 = 1.$

- 13. Observe that $f(x) = \frac{e^x f(x)}{e^x}$. Apply L'Hospital's Rule.
- 14. Since f''(c) exists, there exists a $\delta > 0$ such that f'(x) exists on $(c \delta, c + \delta)$. Therefore, by L'Hospital's Rule, the given limit is equal to $\lim_{h\to 0} \frac{f'(c+h)-f'(c-h)}{2h}$ if it exists. But $\lim_{h\to 0} \frac{f'(c+h)-f'(c-h)}{2h} = \frac{1}{2} \left[\lim_{h\to 0} \frac{f'(c+h)-f'(c)}{h} + \lim_{h\to 0} \frac{f'(c-h)-f'(c)}{-h} \right] = \frac{1}{2} \left[f''(c) + f''(c) \right].$ Let f(x) = 1 on $(0, \infty), f(0) = 0$ and f(x) = -1 on $(-\infty, 0)$. Then f is not continuous at

Det f(x) = 1 on $(0, \infty)$, f(0) = 0 and f(x) = -1 on $(-\infty, 0)$. Then f is not continuous at 0 hence f''(0) does not exist. It can be easily verified that the limit given in the question exists.

- 15. Since f is one-one (see Application 7.2), it is either strictly increasing or strictly decreasing (see Problem 20 of PP 6). Hence either $f'(x) \ge 0$ for all $x \in [a, b]$ or $f'(x) \le 0$ for all $x \in [a, b]$. This problem can also be solved using Problem 18 in PP 7.
- 16. First note that f is one-one as $f'(x) \neq 0$ for all $x \in [a, b]$ (See Application 7.2). Let $y_0 \in J$ and $y_0 = f(x_0)$ for some $x_0 \in [a, b]$. Let (y_n) be any arbitrary sequence in J such that $y_n \neq y_0$ for all $n, y_n \to y_0$ and $y_n = f(x_n)$ for some $x_n \in [a, b]$. Since f^{-1} is continuous (see Problem 16 in PP5) and f^{-1} is also one-one, we have $x_n \to x_0$ and $x_n \neq x_0$ for all n. Now

$$\lim_{n \to \infty} \frac{f^{-1}(y_n) - f^{-1}(y_0)}{y_n - y_0} = \lim_{n \to \infty} \frac{x_n - x_0}{f(x_n) - f(x_0)} = \lim_{n \to \infty} \frac{1}{\frac{f(x_n) - f(x_0)}{x_n - x_0}} = \frac{1}{f'(x_0)}$$