1. Let $f:[a, b] \rightarrow \mathbb{R}$ and $n \in \mathbb{N}$. Suppose that $f^{(n+1)}$ exists on $[a, b]$ and $f^{(n+1)}(x)=0$ for all $x \in[a, b]$. Show that f is a polynomial of degree less than or equal to n.
2. Show that $1+\frac{x}{2}-\frac{x^{2}}{8} \leq \sqrt{1+x} \leq 1+\frac{x}{2}$ for $x>0$.
3. Show that for $x>0,\left|\log (1+x)-\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}\right)\right| \leq \frac{x^{4}}{4}$.
4. Using Taylor's theorem, show that $1-\frac{1}{2} x^{2} \leq \cos x$ for all $x \in \mathbb{R}$.
5. Let $x \in \mathbb{R}$ be such that $|x|^{5}<\frac{5!}{10^{4}}$. Show that $\sin x$ can be approximated by $x-\frac{x^{3}}{6}$ with an error of magnitude less than or equal to 10^{-4}.
6. Using Taylor's theorem, establish the binomial expansion:

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\ldots+x^{n}, x \in \mathbb{R}
$$

7. Using Taylor's theorem, compute $\lim _{x \rightarrow 0} \frac{1-\sqrt{1+x^{2}} \cos x}{x^{4}}$.
8. Using the EMVT show that $\cos y-\cos x \geq(x-y) \sin x$ for all $x, y \in\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$.
9. (a) Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{\prime \prime}(x) \geq 0$ for all $x \in[a, b]$. Suppose that $x, y \in(a, b)$, $x<y$ and $0<\lambda<1$. Show that

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

i.e., the chord joining the two points $(x, f(x))$ and $(y, f(y))$ lies above the portion $\{(t, f(t)): t \in(x, y)\}$ of the graph.
(b) Show that $\lambda \sin x \leq \sin \lambda x$ for all $x \in[0, \pi]$ and $0<\lambda<1$.
10. Let $f:[a, b] \rightarrow \mathbb{R}$ be twice differentiable. Suppose $f^{\prime}(a)=f^{\prime}(b)=0$. Show that there exist $c_{1}, c_{2} \in(a, b)$ such that $|f(b)-f(a)|=\left(\frac{b-a}{2}\right)^{2} \frac{1}{2}\left|f^{\prime \prime}\left(c_{1}\right)-f^{\prime \prime}\left(c_{2}\right)\right|$.
11. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that $f^{\prime \prime \prime}(x)>0$ for all $x \in \mathbb{R}$. Suppose that $x_{1}, x_{2} \in \mathbb{R}$ and $x_{1}<x_{2}$. Show that $f\left(x_{2}\right)-f\left(x_{1}\right)>f^{\prime}\left(\frac{x_{1}+x_{2}}{2}\right)\left(x_{2}-x_{1}\right)$.
12. Let f be a twice differentiable function on \mathbb{R} such that $f^{\prime \prime}(x) \geq 0$ for all $x \in \mathbb{R}$. Show that if f is bounded then it is a constant function.
13. (a) For a positive integer n, show that there exists $c \in(0,1)$ such that

$$
e=1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{e^{c}}{(n+1)!} .
$$

Further, show that $\frac{e^{c}}{n+1}=n!e-m$ for some integer m.
(b) (*) Show that e is an irrational number.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.
14. (*) (Taylor's theorem with the Cauchy remainder) Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n)}$ be continuous on $[a, b]$ and $f^{(n+1)}$ exists on (a,b). Suppose $x_{0} \in[a, b]$ and $x \in[a, b] \backslash\left\{x_{0}\right\}$. For every $t \in[a, b]$, define

$$
g(t)=f(x)-f(t)-(x-t) f^{\prime}(t)-\frac{(x-t)^{2}}{2!} f^{\prime \prime}(t)-\cdots-\frac{(x-t)^{n}}{n!} f^{(n)}(t)
$$

(a) Show that $g^{\prime}(t)=-\frac{(x-t)^{n}}{n!} f^{(n+1)}(t)$.
(b) Show that there exists c between x and x_{0} such that $\frac{g(x)-g\left(x_{0}\right)}{x-x_{0}}=-\frac{(x-c)^{n}}{n!} f^{(n+1)}(c)$.
(c) Show that there exists c between x and x_{0} such that

$$
f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2!} f^{\prime \prime}\left(x_{0}\right)+\cdots+\frac{\left(x-x_{0}\right)^{n}}{n!} f^{(n)}\left(x_{0}\right)+\frac{(x-c)^{n}\left(x-x_{0}\right)}{n!} f^{(n+1)}(c) .
$$

1. Fix $x \in(a, b]$. By Taylor's Theorem, $f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+$ $\frac{f^{(n)}(a)}{n!}(x-a)^{n}$ which is a polynomial of degree $\leq n$.
2. By Taylor's theorem, there exists $c \in(0, x)$ such that $\sqrt{1+x}=1+\frac{x}{2}-\frac{1}{8} \frac{x^{2}}{(1+c)^{3 / 2}}$.
3. By Taylor's theorem, there exists $c \in(0, x)$ such that $\log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4(1+c)^{4}}$.
4. By Taylor's Theorem, there exists c between 0 and x such that $\cos x=1-\frac{1}{2} x^{2}+\frac{\sin c}{6} x^{3}$. Verify that $\frac{\sin c}{6} x^{3} \geq 0$ when $|x| \leq \pi$. If $|x| \geq \pi$ then $1-\frac{1}{2} x^{2}<-3 \leq \cos x$.
5. By Taylor's theorem, there exists c between 0 and x such that $\sin x=x-\frac{x^{3}}{3!}+(\cos c) \frac{x^{5}}{5!}$. If $|x|^{5}<\frac{5!}{10^{4}}$, then $\left|\sin x-\left(x-\frac{x^{3}}{6}\right)\right| \leq 10^{-4}$.
6. Let $f(x)=x^{n}$. By Taylor's theorem there exists c between 1 and $1+x$ such that $(1+x)^{n}=$ $f(1)+f^{\prime}(1) x+\frac{f^{\prime \prime}(1)}{2!} x^{2}+\cdots+\frac{f^{n}(1)}{n!} x^{n}+\frac{f^{n+1}(c)}{(n+1)!} x^{n+1}$ which leads to the answer.
7. Observe from Taylor's theorem that $\sqrt{1+x^{2}}=1+\frac{x^{2}}{2}-\frac{x^{4}}{8}+\alpha x^{6}$ and $\cos x=1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+\beta x^{5}$ for some α and β in \mathbb{R}. The limit is $\frac{1}{3}$.
8. Let $x, y \in\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$. By the EMVT, there exists c between x and y such that $\cos y=\cos x-$ $(y-x) \sin x-\frac{\cos c}{2}(y-x)^{2}$. This leads to the answer.
9. (a) Let $x_{\lambda}=\lambda x+(1-\lambda) y$. Since $f^{\prime \prime}(t) \geq 0$ for all $t \in[a, b]$, by the EMVT, $f(x) \geq$ $f\left(x_{\lambda}\right)+f^{\prime}\left(x_{\lambda}\right)(1-\lambda)(x-y)$ and $f(y) \geq f\left(x_{\lambda}\right)+f^{\prime}\left(x_{\lambda}\right) \lambda(y-x)$. Eliminate $f^{\prime}\left(x_{\lambda}\right)$.
(b) Define $f(x)=-\sin x$ on $[0, \pi]$. Take $y=0$ and apply the inequality given in (a).
10. By the EMVT theorem, $f\left(\frac{a+b}{2}\right)=f(a)+\frac{f^{\prime \prime}\left(c_{1}\right)}{2}\left(\frac{b-a}{2}\right)^{2}$ and $f\left(\frac{a+b}{2}\right)=f(b)+\frac{f^{\prime \prime}\left(c_{2}\right)}{2}\left(\frac{b-a}{2}\right)^{2}$ for some $c_{1}, c_{2} \in(a, b)$. Eliminate $f\left(\frac{a+b}{2}\right)$.
11. Let $\bar{x}=\frac{x_{1}+x_{2}}{2}$. Since $f^{\prime \prime \prime}(x)>0$ for all $x \in \mathbb{R}$, by Taylor's theorem $f\left(x_{2}\right)>f(\bar{x})+f^{\prime}(\bar{x})\left(x_{2}-\right.$ $\bar{x})+\frac{f^{\prime \prime}(\bar{x})}{2}\left(x_{2}-\bar{x}\right)^{2}$ and $f\left(x_{1}\right)<f(\bar{x})+f^{\prime}(\bar{x})\left(x_{1}-\bar{x}\right)+\frac{f^{\prime \prime}(\bar{x})}{2}\left(x_{2}-\bar{x}\right)^{2}$. Eliminate $f(\bar{x})$ and $\frac{f^{\prime \prime}(\bar{x})}{2}\left(x_{2}-\bar{x}\right)^{2}$.
12. Suppose $f^{\prime}\left(x_{0}\right)>0$ for some $x_{0} \in \mathbb{R}$. Since $f^{\prime \prime}(x) \geq 0$ for all $x \in \mathbb{R}$, by the EMVT, $f(x) \geq f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \rightarrow \infty$ as $x \rightarrow \infty$. If $f^{\prime}\left(x_{0}\right)<0$, then $f(x) \rightarrow \infty$ as $x \rightarrow-\infty$. This contradicts the fact that f is bounded.
13. (a) Let $f(x)=e^{x}$ on $[0,1]$. By Taylor's theorem, there exists $c \in(0,1)$ such that $e=$ $1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{e^{c}}{(n+1)!}$. Multiply both sides by $n!$ to get $\frac{e^{c}}{n+1}=n!e-m$ for some integer m.
(b) If $e=\frac{p}{q}$ for some $p \in \mathbb{Z}$ and $q \in \mathbb{N}$, then by (a), $\left(\frac{p}{q}\right)^{c} \frac{1}{n+1}=n!\frac{p}{q}-m$. Since $n!\frac{p}{q}-m$ is an integer for $n \geq q,\left(\frac{p}{q}\right)^{c} \frac{1}{n+1}$ is a natural number for every $n \geq q$. But $\left(\frac{p}{q}\right)^{c} \frac{1}{n+1} \rightarrow 0$ as $n \rightarrow \infty$ which is a contradiction.
14. (a) Observe that for $k \geq 1, \frac{d}{d t}\left(-\frac{(x-t)^{k}}{k!} f^{(k)}(t)\right)=\frac{(x-t)^{k-1}}{(k-1)!} f^{(k)}(t)-\frac{(x-t)^{k}}{k!} f^{(k+1)}(t)$.
(b) Use (a) and the MVT.
(c) Since $g(x)=0$, by (b), $g\left(x_{0}\right)=\frac{(x-c)^{n}\left(x-x_{0}\right)}{n!} f^{(n+1)}(c)$ which establishes part (c).
