Practice Problems 9: Taylor's Theorem

- 1. Let $f : [a, b] \to \mathbb{R}$ and $n \in \mathbb{N}$. Suppose that $f^{(n+1)}$ exists on [a, b] and $f^{(n+1)}(x) = 0$ for all $x \in [a, b]$. Show that f is a polynomial of degree less than or equal to n.
- 2. Show that $1 + \frac{x}{2} \frac{x^2}{8} \le \sqrt{1+x} \le 1 + \frac{x}{2}$ for x > 0.
- 3. Show that for x > 0, $|\log(1+x) \left(x \frac{x^2}{2} + \frac{x^3}{3}\right)| \le \frac{x^4}{4}$.
- 4. Using Taylor's theorem, show that $1 \frac{1}{2}x^2 \le \cos x$ for all $x \in \mathbb{R}$.
- 5. Let $x \in \mathbb{R}$ be such that $|x|^5 < \frac{5!}{10^4}$. Show that $\sin x$ can be approximated by $x \frac{x^3}{6}$ with an error of magnitude less than or equal to 10^{-4} .
- 6. Using Taylor's theorem, establish the binomial expansion:

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + x^n, \ x \in \mathbb{R}.$$

- 7. Using Taylor's theorem, compute $\lim_{x\to 0} \frac{1-\sqrt{1+x^2}\cos x}{x^4}$.
- 8. Using the EMVT show that $\cos y \cos x \ge (x y) \sin x$ for all $x, y \in [\frac{\pi}{2}, \frac{3\pi}{2}]$.
- 9. (a) Let $f : [a, b] \to \mathbb{R}$ be such that $f''(x) \ge 0$ for all $x \in [a, b]$. Suppose that $x, y \in (a, b)$, x < y and $0 < \lambda < 1$. Show that

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

i.e., the chord joining the two points (x, f(x)) and (y, f(y)) lies above the portion $\{(t, f(t)) : t \in (x, y)\}$ of the graph.

- (b) Show that $\lambda \sin x \leq \sin \lambda x$ for all $x \in [0, \pi]$ and $0 < \lambda < 1$.
- 10. Let $f:[a,b] \to \mathbb{R}$ be twice differentiable. Suppose f'(a) = f'(b) = 0. Show that there exist $c_1, c_2 \in (a,b)$ such that $|f(b) f(a)| = \left(\frac{b-a}{2}\right)^2 \frac{1}{2} |f''(c_1) f''(c_2)|$.
- 11. Let $f : \mathbb{R} \to \mathbb{R}$ be such that f'''(x) > 0 for all $x \in \mathbb{R}$. Suppose that $x_1, x_2 \in \mathbb{R}$ and $x_1 < x_2$. Show that $f(x_2) - f(x_1) > f'\left(\frac{x_1+x_2}{2}\right)(x_2-x_1)$.
- 12. Let f be a twice differentiable function on \mathbb{R} such that $f''(x) \ge 0$ for all $x \in \mathbb{R}$. Show that if f is bounded then it is a constant function.
- 13. (a) For a positive integer n, show that there exists $c \in (0, 1)$ such that

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{e^c}{(n+1)!}.$$

Further, show that $\frac{e^c}{n+1} = n!e - m$ for some integer m. (b) (*) Show that e is an irrational number.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.

14. (*) (Taylor's theorem with the Cauchy remainder) Let $f : [a, b] \to \mathbb{R}$ be such that $f^{(n)}$ be continuous on [a, b] and $f^{(n+1)}$ exists on (a, b). Suppose $x_0 \in [a, b]$ and $x \in [a, b] \setminus \{x_0\}$. For every $t \in [a, b]$, define

$$g(t) = f(x) - f(t) - (x - t)f'(t) - \frac{(x - t)^2}{2!}f''(t) - \dots - \frac{(x - t)^n}{n!}f^{(n)}(t).$$

- (a) Show that $g'(t) = -\frac{(x-t)^n}{n!} f^{(n+1)}(t)$.
- (b) Show that there exists c between x and x_0 such that $\frac{g(x)-g(x_0)}{x-x_0} = -\frac{(x-c)^n}{n!}f^{(n+1)}(c)$.
- (c) Show that there exists c between x and x_0 such that

$$f(x) = f(x_0) + (x - x_0)f'(x_0) + \frac{(x - x_0)^2}{2!}f''(x_0) + \dots + \frac{(x - x_0)^n}{n!}f^{(n)}(x_0) + \frac{(x - c)^n(x - x_0)}{n!}f^{(n+1)}(c).$$

Practice Problems 9: Hints/Solutions

- 1. Fix $x \in (a, b]$. By Taylor's Theorem, $f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$ which is a polynomial of degree $\leq n$.
- 2. By Taylor's theorem, there exists $c \in (0, x)$ such that $\sqrt{1+x} = 1 + \frac{x}{2} \frac{1}{8} \frac{x^2}{(1+c)^{3/2}}$.
- 3. By Taylor's theorem, there exists $c \in (0, x)$ such that $\log(1+x) = x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4(1+c)^4}$.
- 4. By Taylor's Theorem, there exists c between 0 and x such that $\cos x = 1 \frac{1}{2}x^2 + \frac{\sin c}{6}x^3$. Verify that $\frac{\sin c}{6}x^3 \ge 0$ when $|x| \le \pi$. If $|x| \ge \pi$ then $1 - \frac{1}{2}x^2 < -3 \le \cos x$.
- 5. By Taylor's theorem, there exists c between 0 and x such that $\sin x = x \frac{x^3}{3!} + (\cos c)\frac{x^5}{5!}$. If $|x|^5 < \frac{5!}{10^4}$, then $|\sin x (x \frac{x^3}{6})| \le 10^{-4}$.
- 6. Let $f(x) = x^n$. By Taylor's theorem there exists c between 1 and 1+x such that $(1+x)^n = f(1) + f'(1)x + \frac{f''(1)}{2!}x^2 + \dots + \frac{f^n(1)}{n!}x^n + \frac{f^{n+1}(c)}{(n+1)!}x^{n+1}$ which leads to the answer.
- 7. Observe from Taylor's theorem that $\sqrt{1+x^2} = 1 + \frac{x^2}{2} \frac{x^4}{8} + \alpha x^6$ and $\cos x = 1 \frac{x^2}{2} + \frac{x^4}{24} + \beta x^5$ for some α and β in \mathbb{R} . The limit is $\frac{1}{3}$.
- 8. Let $x, y \in [\frac{\pi}{2}, \frac{3\pi}{2}]$. By the EMVT, there exists c between x and y such that $\cos y = \cos x (y-x)\sin x \frac{\cos c}{2}(y-x)^2$. This leads to the answer.
- 9. (a) Let $x_{\lambda} = \lambda x + (1 \lambda)y$. Since $f''(t) \ge 0$ for all $t \in [a, b]$, by the EMVT, $f(x) \ge f(x_{\lambda}) + f'(x_{\lambda})(1 \lambda)(x y)$ and $f(y) \ge f(x_{\lambda}) + f'(x_{\lambda})\lambda(y x)$. Eliminate $f'(x_{\lambda})$. (b) Define $f(x) = -\sin x$ on $[0, \pi]$. Take y = 0 and apply the inequality given in (a).
- 10. By the EMVT theorem, $f\left(\frac{a+b}{2}\right) = f(a) + \frac{f''(c_1)}{2} \left(\frac{b-a}{2}\right)^2$ and $f\left(\frac{a+b}{2}\right) = f(b) + \frac{f''(c_2)}{2} \left(\frac{b-a}{2}\right)^2$ for some $c_1, c_2 \in (a, b)$. Eliminate $f\left(\frac{a+b}{2}\right)$.
- 11. Let $\overline{x} = \frac{x_1 + x_2}{2}$. Since f'''(x) > 0 for all $x \in \mathbb{R}$, by Taylor's theorem $f(x_2) > f(\overline{x}) + f'(\overline{x})(x_2 \overline{x}) + \frac{f''(\overline{x})}{2}(x_2 \overline{x})^2$ and $f(x_1) < f(\overline{x}) + f'(\overline{x})(x_1 \overline{x}) + \frac{f''(\overline{x})}{2}(x_2 \overline{x})^2$. Eliminate $f(\overline{x})$ and $\frac{f''(\overline{x})}{2}(x_2 \overline{x})^2$.
- 12. Suppose $f'(x_0) > 0$ for some $x_0 \in \mathbb{R}$. Since $f''(x) \ge 0$ for all $x \in \mathbb{R}$, by the EMVT, $f(x) \ge f(x_0) + f'(x_0)(x x_0) \to \infty$ as $x \to \infty$. If $f'(x_0) < 0$, then $f(x) \to \infty$ as $x \to -\infty$. This contradicts the fact that f is bounded.
- 13. (a) Let $f(x) = e^x$ on [0, 1]. By Taylor's theorem, there exists $c \in (0, 1)$ such that $e = 1 + \frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{e^c}{(n+1)!}$. Multiply both sides by n! to get $\frac{e^c}{n+1} = n!e m$ for some integer m. (b) If $e = \frac{p}{q}$ for some $p \in \mathbb{Z}$ and $q \in \mathbb{N}$, then by (a), $\left(\frac{p}{q}\right)^c \frac{1}{n+1} = n!\frac{p}{q} - m$. Since $n!\frac{p}{q} - m$ is an integer for $n \ge q$, $\left(\frac{p}{q}\right)^c \frac{1}{n+1}$ is a natural number for every $n \ge q$. But $\left(\frac{p}{q}\right)^c \frac{1}{n+1} \to 0$ as $n \to \infty$ which is a contradiction.
- 14. (a) Observe that for $k \ge 1$, $\frac{d}{dt} \left(-\frac{(x-t)^k}{k!} f^{(k)}(t) \right) = \frac{(x-t)^{k-1}}{(k-1)!} f^{(k)}(t) \frac{(x-t)^k}{k!} f^{(k+1)}(t).$
 - (b) Use (a) and the MVT.
 - (c) Since g(x) = 0, by (b), $g(x_0) = \frac{(x-c)^n (x-x_0)}{n!} f^{(n+1)}(c)$ which establishes part (c).