
Practice Problems 9: Taylor’s Theorem

1. Let f : [a, b] → R and n ∈ N. Suppose that f (n+1) exists on [a, b] and f (n+1)(x) = 0 for all
x ∈ [a, b]. Show that f is a polynomial of degree less than or equal to n.

2. Show that 1 + x
2 − x2

8 ≤
√
1 + x ≤ 1 + x

2 for x > 0.

3. Show that for x > 0, | log(1 + x)−
(
x− x2

2 + x3

3

)
| ≤ x4

4 .

4. Using Taylor’s theorem, show that 1− 1
2x

2 ≤ cosx for all x ∈ R.

5. Let x ∈ R be such that |x|5 < 5!
104

. Show that sinx can be approximated by x− x3

6 with an
error of magnitude less than or equal to 10−4.

6. Using Taylor’s theorem, establish the binomial expansion:

(1 + x)n = 1 + nx+
n(n− 1)

2!
x2 + ...+ xn, x ∈ R.

7. Using Taylor’s theorem, compute lim
x→0

1−
√
1+x2 cos x
x4 .

8. Using the EMVT show that cos y − cosx ≥ (x− y) sinx for all x, y ∈ [π2 ,
3π
2 ].

9. (a) Let f : [a, b] → R be such that f ′′(x) ≥ 0 for all x ∈ [a, b]. Suppose that x, y ∈ (a, b),
x < y and 0 < λ < 1. Show that

f (λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

i.e., the chord joining the two points (x, f(x)) and (y, f(y)) lies above the portion
{(t, f(t)) : t ∈ (x, y)} of the graph.

(b) Show that λ sinx ≤ sinλx for all x ∈ [0, π] and 0 < λ < 1.

10. Let f : [a, b] → R be twice differentiable. Suppose f ′(a) = f ′(b) = 0. Show that there exist

c1, c2 ∈ (a, b) such that |f(b)− f(a)| =
(
b−a
2

)2 1
2 |f ′′(c1)− f ′′(c2)|.

11. Let f : R → R be such that f ′′′(x) > 0 for all x ∈ R. Suppose that x1, x2 ∈ R and x1 < x2.
Show that f(x2)− f(x1) > f ′ (x1+x2

2

)
(x2 − x1).

12. Let f be a twice differentiable function on R such that f ′′(x) ≥ 0 for all x ∈ R. Show that
if f is bounded then it is a constant function.

13. (a) For a positive integer n, show that there exists c ∈ (0, 1) such that

e = 1 +
1

1!
+

1

2!
+ ...+

ec

(n+ 1)!
.

Further, show that ec

n+1 = n!e−m for some integer m.

(b) (*) Show that e is an irrational number.

Please write to psraj@iitk.ac.in if any typos/mistakes are found in this set of practice problems/solutions/hints.



14. (*) (Taylor’s theorem with the Cauchy remainder) Let f : [a, b] → R be such that f (n)

be continuous on [a, b] and f (n+1) exists on (a, b). Suppose x0 ∈ [a, b] and x ∈ [a, b]\{x0}.
For every t ∈ [a, b], define

g(t) = f(x)− f(t)− (x− t)f ′(t)− (x− t)2

2!
f ′′(t)− · · · − (x− t)n

n!
f (n)(t).

(a) Show that g′(t) = − (x−t)n

n! f (n+1)(t).

(b) Show that there exists c between x and x0 such that g(x)−g(x0)
x−x0

= − (x−c)n

n! f (n+1)(c).

(c) Show that there exists c between x and x0 such that

f(x) = f(x0)+(x−x0)f
′(x0)+

(x− x0)
2

2!
f ′′(x0)+···+(x− x0)

n

n!
f (n)(x0)+

(x− c)n(x− x0)

n!
f (n+1)(c).



Practice Problems 9: Hints/Solutions

1. Fix x ∈ (a, b]. By Taylor’s Theorem, f(x) = f(a) + f ′(a)(x − a) + f ′′(a)
2! (x − a)2 + ... +

f (n)(a)
n! (x− a)n which is a polynomial of degree ≤ n.

2. By Taylor’s theorem, there exists c ∈ (0, x) such that
√
1 + x = 1 + x

2 − 1
8

x2

(1+c)3/2
.

3. By Taylor’s theorem, there exists c ∈ (0, x) such that log(1 + x) = x− x2

2 + x3

3 − x4

4(1+c)4
.

4. By Taylor’s Theorem, there exists c between 0 and x such that cosx = 1 − 1
2x

2 + sin c
6 x3.

Verify that sin c
6 x3 ≥ 0 when | x |≤ π. If | x | ≥ π then 1− 1

2x
2 < −3 ≤ cosx.

5. By Taylor’s theorem, there exists c between 0 and x such that sinx = x− x3

3! + (cos c)x
5

5! . If

|x|5 < 5!
104

, then | sinx−
(
x− x3

6

)
| ≤ 10−4.

6. Let f(x) = xn. By Taylor’s theorem there exists c between 1 and 1+x such that (1+x)n =

f(1) + f ′(1)x+ f ′′(1)
2! x2 + · · ·+ fn(1)

n! xn + fn+1(c)
(n+1)! x

n+1 which leads to the answer.

7. Observe from Taylor’s theorem that
√
1 + x2 = 1+ x2

2 − x4

8 +αx6 and cosx = 1− x2

2 + x4

24+βx5

for some α and β in R. The limit is 1
3 .

8. Let x, y ∈ [π2 ,
3π
2 ]. By the EMVT, there exists c between x and y such that cos y = cosx−

(y − x) sinx− cos c
2 (y − x)2. This leads to the answer.

9. (a) Let xλ = λx + (1 − λ)y. Since f ′′(t) ≥ 0 for all t ∈ [a, b], by the EMVT, f(x) ≥
f(xλ) + f ′(xλ)(1− λ)(x− y) and f(y) ≥ f(xλ) + f ′(xλ)λ(y − x). Eliminate f ′(xλ).

(b) Define f(x) = − sinx on [0, π]. Take y = 0 and apply the inequality given in (a).

10. By the EMVT theorem, f
(
a+b
2

)
= f(a) + f ′′(c1)

2

(
b−a
2

)2
and f

(
a+b
2

)
= f(b) + f ′′(c2)

2

(
b−a
2

)2
for some c1, c2 ∈ (a, b). Eliminate f

(
a+b
2

)
.

11. Let x = x1+x2
2 . Since f ′′′(x) > 0 for all x ∈ R, by Taylor’s theorem f(x2) > f(x)+f ′(x)(x2−

x) + f ′′(x)
2 (x2 − x)2 and f(x1) < f(x) + f ′(x)(x1 − x) + f ′′(x)

2 (x2 − x)2. Eliminate f(x) and
f ′′(x)

2 (x2 − x)2.

12. Suppose f ′(x0) > 0 for some x0 ∈ R. Since f ′′(x) ≥ 0 for all x ∈ R, by the EMVT,
f(x) ≥ f(x0) + f ′(x0)(x− x0) → ∞ as x → ∞. If f ′(x0) < 0, then f(x) → ∞ as x → −∞.
This contradicts the fact that f is bounded.

13. (a) Let f(x) = ex on [0, 1]. By Taylor’s theorem, there exists c ∈ (0, 1) such that e =
1+ 1

1! +
1
2! + ...+ ec

(n+1)! . Multiply both sides by n! to get ec

n+1 = n!e−m for some integer m.

(b) If e = p
q for some p ∈ Z and q ∈ N, then by (a),

(
p
q

)c
1

n+1 = n!pq −m. Since n!pq −m is

an integer for n ≥ q,
(
p
q

)c
1

n+1 is a natural number for every n ≥ q. But
(
p
q

)c
1

n+1 → 0 as

n → ∞ which is a contradiction.

14. (a) Observe that for k ≥ 1, d
dt

(
− (x−t)k

k! f (k)(t)
)
= (x−t)k−1

(k−1)! f (k)(t)− (x−t)k

k! f (k+1)(t).

(b) Use (a) and the MVT.

(c) Since g(x) = 0, by (b), g(x0) =
(x−c)n(x−x0)

n! f (n+1)(c) which establishes part (c).


