MTH 112M - 2024

Assignment 1: Polar co-ordinates, Applications of Integration,

- 1. Find the area of the region in the first quadrant bounded on the left by the Y-axis, below by the curve $x = 2\sqrt{y}$, above left by the curve $x = (y-1)^2$, and above right by the line x = 3-y.
- 2. Sketch the graphs of $r = -|\cos \theta|$ and $r^2 = -\cos \theta$.
- 3. Sketch the graphs of $r = \cos(2\theta)$ and $r = \sin(2\theta)$. Also, find their points of intersection.
- 4. Sketch the graph of $r = 1 + \sin \theta$. Find the area of the region that is inside the circle $r = 3 \sin \theta$ and also inside $r = 1 + \sin \theta$.
- 5. A curved wedge is cut from a cylinder of radius 3 by two planes. One plane is perpendicular to the axis of the cylinder. The second plane crosses the first plane at a 45° angle at the center of the cylinder. Find the volume of the wedge.
- 6. Let C denote the circular disc of radius b centered at (a, 0) where 0 < b < a. Find the volume of the torus that is generated by revolving C around the y-axis using
 - (a) the Washer Method
 - (b) the Shell Method.
- 7. Consider the curve C defined by $x(t) = \cos^3(t), y(t) = \sin^3 t, 0 \le t \le \frac{\pi}{2}$.
 - (a) Find the length of the curve.
 - (b) Find the area of the surface generated by revolving C about the x-axis.

Assignment 2: Vectors, Curves, Surfaces, Vector Functions

- 1. Consider the planes x y + z = 1, x + ay 2z + 10 = 0 and 2x 3y + z + b = 0, where a and b are parameters. Determine the values of a and b such that the three planes
 - (a) intersect at a single point,
 - (b) intersect in a line,
 - (c) intersect (taken two at a time) in three distinct parallel lines.
- 2. Sketch the surfaces by sketching the cross sections cut from the surfaces by the planes x = 0, y = 0 and z = 1.
 - (a) $z = x^2$ (Cylinder)

- (b) $x^2 + y^2 = 4$ (Circular Cylinder)
- (c) $4z = x^2 + y^2$ (Paraboloid)
- (b) x + y = 4 (Circular Cynnder) (d) $4z^2 = x^2 + y^2$ (Circular cone(s))
- 3. Sketch the following parametric curves:
 - (a) $R_1(t) = (\cos t, \sin t, t), t \in \mathbb{R}$
 - (b) $R_2(t) = (t \cos t, t \sin t, t), t \in \mathbb{R}$
 - (c) $R_3(t) = (t \cos t, t \sin t, t^2), t \ge 0$
 - (d) $R_4(t) = (\cos^2 t, \sin^2 t, t), t \ge 0$
 - (e) $R_5(t) = (t \cos t, t \sin t), t \ge 0$

- 4. The velocity of a particle moving in space is $\frac{d}{dt}c(t) = (\cos t)\vec{i} (\sin t)\vec{j} + \vec{k}$. Find the particle's position as a function of t if $c(0) = 2\vec{i} + \vec{k}$. Also find the angle between its position vector and the velocity vector.
- 5. Show that $c(t) = \sin t^2 \vec{i} + \cos t^2 \vec{j} + 5\vec{k}$ has constant magnitude and is orthogonal to its derivative. Is the velocity vector of constant magnitude?
- 6. Find the point on the curve $c(t) = (5 \sin t)\vec{i} + (5 \cos t)\vec{j} + 12t\vec{k}$ at a distance 26π units along the curve from (0, 5, 0) in the direction of increasing arc length.
- 7. Reparametrize the curves
 - (a) $c(t) = \frac{t^2}{2}\vec{i} + \frac{t^3}{3}\vec{k}, \ 0 \le t \le 2,$
 - (b) $c(t) = 2\cos t\vec{i} + 2\sin t\vec{j}, \ 0 \le t \le 2\pi$

in terms of arc length.

Assignment 3: Functions of several variables (Continuity and Differentiability)

- 1. Sketch the graphs of the following functions:
 - (a) $F_1(x,y) = x^2 + y^2$, $(x,y) \in \mathbb{R}^2$.
 - (b) $F_2(x,y) = \sqrt{x^2 + y^2}, (x,y) \in \mathbb{R}^2.$
- 2. Sketch the (level) surfaces defined as follows:
 - (a) $F_1(x, y, z) = 2$ where $F_1(x, y, z) = z (x^2 + y^2)$ for all $(x, y, z) \in \mathbb{R}^3$.
 - (b) $F_2(x, y, z) = 0$ where $F_2(x, y, z) = z^2 (x^2 + y^2)$ for all $(x, y, z) \in \mathbb{R}^3$.
 - (c) $F_3(x, y, z) = 4$ where $F_3(x, y, z) = x^2 + y^2$ for all $(x, y, z) \in \mathbb{R}^3$.
- 3. Identify the points, if any, where the following functions fail to be continuous:

(i)
$$f(x,y) = \begin{cases} xy & \text{if } xy \ge 0\\ -xy & \text{if } xy < 0 \end{cases}$$
 (ii) $f(x,y) = \begin{cases} xy & \text{if } xy \text{ is rationnal}\\ -xy & \text{if } xy \text{ is irrational.} \end{cases}$

4. Consider the function $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^2y^2 + (x-y)^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if}(x,y) = (0,0) \end{cases}$$

Show that the function satisfy the following:

- (a) The iterated limits $\lim_{x \to 0} \left[\lim_{y \to 0} f(x, y) \right]$ and $\lim_{y \to 0} \left[\lim_{x \to 0} f(x, y) \right]$ exist and equals 0;
- (b) $\lim_{(x,y)\longrightarrow(0,0)} f(x,y)$ does not exist;
- (c) f(x, y) is not continuous at (0, 0);
- (d) the partial derivatives exist at (0,0).
- 5. Let $f(x, y) = (x^2 + y^2) \sin \frac{1}{x^2 + y^2}$ if $(x, y) \neq (0, 0)$ and 0, otherwise. Show that f is differentiable at every point of \mathbb{R}^2 but the partial derivatives are not continuous at (0, 0).
- 6. Let f(x,y) = |xy| for all $(x,y) \in \mathbb{R}^2$. Show that

- (a) f is differentiable at (0, 0.)
- (b) $f_x(0, y_0)$ does not exist if $y_0 \neq 0$.

Assignment 4: Directional derivatives, Maxima, Minima, Lagrange Multipliers

- 1. Let $f(x,y) = \frac{1}{2} \left(\left| |x| |y| \left| |x| |y| \right) \right)$. Is f continuous at (0,0)? Which directional derivatives of f exist at (0,0)? Is f differentiable at (0,0)?
- 2. Let $f(x,y) = \frac{x^2y}{x^2+y^2}$ for $(x,y) \neq (0,0)$ and f(0,0) = 0. Show that the directional derivative of f at (0,0) in all directions exist but f is not differentiable at (0,0).
- 3. Let $f(x,y) = x^2 e^y + \cos(xy)$. Find the directional derivative of f at (1,2) in the direction $(\frac{3}{5}, \frac{4}{5})$.
- 4. Find the equation of the surface generated by the normals to the surface $x + 2yz + xyz^2 = 0$ at all points on the z-axis.
- 5. Examine the following functions for local maxima, local minima and saddle points:

i)
$$4xy - x^4 - y^4$$
 ii) $x^3 - 3xy^2$

Assignment 5 : Double Integrals

1. Evaluate the following integrals:

i)
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \sqrt{1-y^2} dy dx$$
 ii) $\int_{0x}^{\pi\pi} \frac{\sin y}{y} dy dx$ *iii*) $\int_{0y}^{11} x^2 \exp^{xy} dx dy$.

- 2. Evaluate $\iint_R x dx dy$ where R is the region $1 \le x(1-y) \le 2$ and $1 \le xy \le 2$.
- 3. Using double integral, find the area enclosed by the curve $r = sin3\theta$ given in polar cordinates.

4. Compute
$$\lim_{a \to \infty} \int_{D(a)} \exp^{-(x^2 + y^2)} dx dy$$
, where
i) $D(a) = \{(x, y) : x^2 + y^2 \le a^2\}$ and *ii*) $D(a) = \{(x, y) : 0 \le x \le a, 0 \le y \le a\}.$

Hence prove that (i) $\int_{0}^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$ (ii) $\int_{0}^{\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{4}$.

5. Find the volume of the solid which is common to the cylinder $x^2 + y^2 = 1$ and $x^2 + z^2 = 1$.

Assignment 6 : Triple Integrals, Surface Integrals, Line integrals

- 1. Evaluate the integral $\iiint_W \frac{dzdydx}{\sqrt{1+x^2+y^2+z^2}}$; where W is the ball $x^2 + y^2 + z^2 \le 1$.
- 2. What is the integral of the function x^2z taken over the entire surface of a right circular cylinder of height h which stands on the circle $x^2 + y^2 = a^2$. What is the integral of the given function taken throughout the volume of the cylinder.
- 3. Find the line integral of the vector field $F(x, y, z) = y\vec{i} x\vec{j} + \vec{k}$ along the path $\mathbf{c}(t) = (\cos t, \sin t, \frac{t}{2\pi}), \quad 0 \le t \le 2\pi$ joining (1, 0, 0) to (1, 0, 1).

- 4. Evaluate $\int_C T \cdot dR$, where C is the circle $x^2 + y^2 = 1$ and T is the unit tangent vector.
- 5. Show that the integral $\int_C yz dx + (xz+1)dy + xy dz$ is independent of the path C joining (1, 0, 0) and (2, 1, 4).

Assignment 7 : Green's /Stokes' /Gauss' Theorems

- 1. Use Green's Theorem to compute $\int_C (2x^2 y^2) dx + (x^2 + y^2) dy$ where C is the boundary of the region $\{(x, y) : x, y \ge 0 \& x^2 + y^2 \le 1\}$.
- 2. Use Stokes' Theorem to evaluate the line integral $\int_C -y^3 dx + x^3 dy z^3 dz$, where C is the intersection of the cylinder $x^2 + y^2 = 1$ and the plane x + y + z = 1 and the orientation of C corresponds to counterclockwise motion in the xy-plane.
- 3. Let $\overrightarrow{F} = \frac{\overrightarrow{r}}{|\overrightarrow{r}|^3}$ where $\overrightarrow{r} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$ and let S be any surface that surrounds the origin. Prove that $\iint_{S} \overrightarrow{F} \cdot n \ d\sigma = 4\pi$.
- 4. Let *D* be the domain inside the cylinder $x^2 + y^2 = 1$ cut off by the planes z = 0 and z = x + 2. If $\vec{F} = (x^2 + ye^z, y^2 + ze^x, z + xe^y)$, use the divergence theorem to evaluate $\int \int_{-\infty}^{\infty} F \cdot \mathbf{n} \, d\sigma$.