Assignment 1: Polar co-ordinates, Applications of Integration,

1. Find the area of the region in the first quadrant bounded on the left by the Y-axis, below by the curve $x=2 \sqrt{y}$, above left by the curve $x=(y-1)^{2}$, and above right by the line $x=3-y$.
2. Sketch the graphs of $r=-|\cos \theta|$ and $r^{2}=-\cos \theta$.
3. Sketch the graphs of $r=\cos (2 \theta)$ and $r=\sin (2 \theta)$. Also, find their points of intersection.
4. Sketch the graph of $r=1+\sin \theta$. Find the area of the region that is inside the circle $r=3 \sin \theta$ and also inside $r=1+\sin \theta$.
5. A curved wedge is cut from a cylinder of radius 3 by two planes. One plane is perpendicular to the axis of the cylinder. The second plane crosses the first plane at a 45° angle at the center of the cylinder. Find the volume of the wedge.
6. Let C denote the circular disc of radius b centered at $(a, 0)$ where $0<b<a$. Find the volume of the torus that is generated by revolving C around the y-axis using
(a) the Washer Method
(b) the Shell Method.
7. Consider the curve C defined by $x(t)=\cos ^{3}(t), y(t)=\sin ^{3} t, 0 \leq t \leq \frac{\pi}{2}$.
(a) Find the length of the curve.
(b) Find the area of the surface generated by revolving C about the x-axis.

Assignment 2: Vectors, Curves, Surfaces, Vector Functions

1. Consider the planes $x-y+z=1, x+a y-2 z+10=0$ and $2 x-3 y+z+b=0$, where a and b are parameters. Determine the values of a and b such that the three planes
(a) intersect at a single point,
(b) intersect in a line,
(c) intersect (taken two at a time) in three distinct parallel lines.
2. Sketch the surfaces by sketching the cross sections cut from the surfaces by the planes $x=0, y=0$ and $z=1$.
(a) $z=x^{2}$ (Cylinder)
(b) $x^{2}+y^{2}=4$ (Circular Cylinder)
(c) $4 z=x^{2}+y^{2}$ (Paraboloid)
(d) $4 z^{2}=x^{2}+y^{2}$ (Circular cone(s))
3. Sketch the following parametric curves:
(a) $R_{1}(t)=(\cos t, \sin t, t), t \in \mathbb{R}$
(b) $R_{2}(t)=(t \cos t, t \sin t, t), t \in \mathbb{R}$
(c) $R_{3}(t)=\left(t \cos t, t \sin t, t^{2}\right), t \geq 0$
(d) $R_{4}(t)=\left(\cos ^{2} t, \sin ^{2} t, t\right), t \geq 0$
(e) $R_{5}(t)=(t \cos t, t \sin t), t \geq 0$
4. The velocity of a particle moving in space is $\frac{d}{d t} c(t)=(\cos t) \vec{i}-(\sin t) \vec{j}+\vec{k}$. Find the particle's position as a function of t if $c(0)=2 \vec{i}+\vec{k}$. Also find the angle between its position vector and the velocity vector.
5. Show that $c(t)=\sin t^{2} \vec{i}+\cos t^{2} \vec{j}+5 \vec{k}$ has constant magnitude and is orthogonal to its derivative. Is the velocity vector of constant magnitude?
6. Find the point on the curve $c(t)=(5 \sin t) \vec{i}+(5 \cos t) \vec{j}+12 t \vec{k}$ at a distance 26π units along the curve from $(0,5,0)$ in the direction of increasing arc length.
7. Reparametrize the curves
(a) $c(t)=\frac{t^{2}}{2} \vec{i}+\frac{t^{3}}{3} \vec{k}, \quad 0 \leq t \leq 2$,
(b) $c(t)=2 \cos t \vec{i}+2 \sin t \vec{j}, \quad 0 \leq t \leq 2 \pi$
in terms of arc length.

Assignment 3: Functions of several variables (Continuity and Differentiability)

1. Sketch the graphs of the following functions:
(a) $F_{1}(x, y)=x^{2}+y^{2},(x, y) \in \mathbb{R}^{2}$.
(b) $F_{2}(x, y)=\sqrt{x^{2}+y^{2}},(x, y) \in \mathbb{R}^{2}$.
2. Sketch the (level) surfaces defined as follows:
(a) $F_{1}(x, y, z)=2$ where $F_{1}(x, y, z)=z-\left(x^{2}+y^{2}\right)$ for all $(x, y, z) \in \mathbb{R}^{3}$.
(b) $F_{2}(x, y, z)=0$ where $F_{2}(x, y, z)=z^{2}-\left(x^{2}+y^{2}\right)$ for all $(x, y, z) \in \mathbb{R}^{3}$.
(c) $F_{3}(x, y, z)=4$ where $F_{3}(x, y, z)=x^{2}+y^{2}$ for all $(x, y, z) \in \mathbb{R}^{3}$.
3. Identify the points, if any, where the following functions fail to be continuous:
(i) $f(x, y)= \begin{cases}x y & \text { if } x y \geq 0 \\ -x y & \text { if } x y<0\end{cases}$
(ii) $f(x, y)= \begin{cases}x y & \text { if } x y \text { is rationnal } \\ -x y & \text { if } x y \text { is irrational. }\end{cases}$
4. Consider the function $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}\frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y)^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Show that the function satisfy the following:
(a) The iterated limits $\lim _{x \rightarrow 0}\left[\lim _{y \rightarrow 0} f(x, y)\right]$ and $\lim _{y \rightarrow 0}\left[\lim _{x \rightarrow 0} f(x, y)\right]$ exist and equals 0 ;
(b) $\lim _{(x, y) \longrightarrow(0,0)} f(x, y)$ does not exist;
(c) $f(x, y)$ is not continuous at $(0,0)$;
(d) the partial derivatives exist at $(0,0)$.
5. Let $f(x, y)=\left(x^{2}+y^{2}\right) \sin \frac{1}{x^{2}+y^{2}}$ if $(x, y) \neq(0,0)$ and 0 , otherwise. Show that f is differentiable at every point of \mathbb{R}^{2} but the partial derivatives are not continuous at $(0,0)$.
6. Let $f(x, y)=|x y|$ for all $(x, y) \in \mathbb{R}^{2}$. Show that
(a) f is differentiable at $(0,0$.)
(b) $f_{x}\left(0, y_{0}\right)$ does not exist if $y_{0} \neq 0$.

Assignment 4: Directional derivatives, Maxima, Minima, Lagrange Multipliers

1. Let $f(x, y)=\frac{1}{2}(| | x|-|y||-|x|-|y|)$. Is f continuous at $(0,0)$? Which directional derivatives of f exist at $(0,0)$? Is f differentiable at $(0,0)$?
2. Let $f(x, y)=\frac{x^{2} y}{x^{2}+y^{2}}$ for $(x, y) \neq(0,0)$ and $f(0,0)=0$. Show that the directional derivative of f at $(0,0)$ in all directions exist but f is not differentiable at $(0,0)$.
3. Let $f(x, y)=x^{2} e^{y}+\cos (x y)$. Find the directional derivative of f at $(1,2)$ in the direction $\left(\frac{3}{5}, \frac{4}{5}\right)$.
4. Find the equation of the surface generated by the normals to the surface $x+2 y z+x y z^{2}=0$ at all points on the z-axis.
5. Examine the following functions for local maxima, local minima and saddle points:
i) $4 x y-x^{4}-y^{4}$
ii) $x^{3}-3 x y^{2}$

Assignment 5 : Double Integrals

1. Evaluate the following integrals:
i) $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \sqrt{1-y^{2}} d y d x$
ii) $\int_{0 x}^{\pi \pi} \int_{x}^{\sin y} y d y d x$
iii) $\iint_{0}^{11} x^{2} \exp ^{x y} d x d y$.
2. Evaluate $\iint_{R} x d x d y$ where R is the region $1 \leq x(1-y) \leq 2$ and $1 \leq x y \leq 2$.
3. Using double integral, find the area enclosed by the curve $r=\sin 3 \theta$ given in polar cordinates.
4. Compute $\lim _{a \rightarrow \infty} \iint_{D(a)} \exp ^{-\left(x^{2}+y^{2}\right)} d x d y$, where
i) $D(a)=\left\{(x, y): x^{2}+y^{2} \leq a^{2}\right\}$ and
ii) $D(a)=\{(x, y): 0 \leq x \leq a, 0 \leq y \leq a\}$.

Hence prove that (i) $\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$
(ii) $\int_{0}^{\infty} x^{2} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{4}$.
5. Find the volume of the solid which is common to the cylinder $x^{2}+y^{2}=1$ and $x^{2}+z^{2}=1$.

Assignment 6 : Triple Integrals, Surface Integrals, Line integrals

1. Evaluate the integral $\iiint_{W} \frac{d z d y d x}{\sqrt{1+x^{2}+y^{2}+z^{2}}}$; where W is the ball $x^{2}+y^{2}+z^{2} \leq 1$.
2. What is the integral of the function $x^{2} z$ taken over the entire surface of a right circular cylinder of height h which stands on the circle $x^{2}+y^{2}=a^{2}$. What is the integral of the given function taken throughout the volume of the cylinder.
3. Find the line integral of the vector field $F(x, y, z)=y \vec{i}-x \vec{j}+\vec{k}$ along the path $\mathbf{c}(t)=$ $\left(\cos t, \sin t, \frac{t}{2 \pi}\right), \quad 0 \leq t \leq 2 \pi$ joining $(1,0,0)$ to $(1,0,1)$.
4. Evaluate $\int_{C} T \cdot d R$, where C is the circle $x^{2}+y^{2}=1$ and T is the unit tangent vector.
5. Show that the integral $\int_{C} y z d x+(x z+1) d y+x y d z$ is independent of the path C joining $(1,0,0)$ and (2, 1, 4).

Assignment 7 : Green's /Stokes' /Gauss' Theorems

1. Use Green's Theorem to compute $\int\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$ where C is the boundary of the region $\left\{(x, y): x, y \geq 0 \& x^{2}+y^{2} \leq 1\right\}$.
2. Use Stokes' Theorem to evaluate the line integral $\int_{C}-y^{3} d x+x^{3} d y-z^{3} d z$, where C is the intersection of the cylinder $x^{2}+y^{2}=1$ and the plane $x+y+z=1$ and the orientation of C corresponds to counterclockwise motion in the $x y$-plane.
3. Let $\vec{F}=\frac{\vec{r}}{|\vec{r}|^{3}}$ where $\vec{r}=x \vec{i}+y \vec{j}+z \vec{k}$ and let S be any surface that surrounds the origin. Prove that $\iint_{S} \vec{F} . n d \sigma=4 \pi$.
4. Let D be the domain inside the cylinder $x^{2}+y^{2}=1$ cut off by the planes $z=0$ and $z=x+2$. If $\vec{F}=\left(x^{2}+y e^{z}, y^{2}+z e^{x}, z+x e^{y}\right)$, use the divergence theorem to evaluate $\iint_{\partial D} F \cdot \mathbf{n} d \sigma$.
