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Lecture 28 : Directional Derivatives, Gradient, Tangent Plane

The partial derivative with respect to x at a point in R3 measures the rate of change of the
function along the X-axis or say along the direction (1, 0, 0). We will now see that this notion can
be generalized to any direction in R3.

Directional Derivative : Let f : R3 → R, X0 ∈ R3 and U ∈ R3 such that ‖ U ‖ = 1. The
directional derivative of f in the direction U at X0 = (x0, y0, z0) is defined by

DX0f(U) = lim
t→0

f(X0 + tU)− f(X0)
t

provided the limit exists.

It is clear that DX0f(e1) = fx(X0), DX0f(e2) = fy(X0) and DX0f(e3) = fz(X0).

The proof of the following theorem is similar to the proof of Theorem 26.2.

Theorem 28.1: If f is differentiable at X0, then DX0f(U) exists for all U ∈ R3, ‖ U ‖= 1.
Moreover, DX0f(U) = f ′(X0) · U = (fx(X0), fy(X0), fz(X0)) · U.

The previous theorem says that if a function is differentiable then all its directional derivatives
exist and they can be easily computed from the derivative.

Examples :

(i) In this example we will see that a function is not differentiable at a point but the directional
derivatives in all directions at that point exist.

Define f : R2 → R by f(x, y) = x2y
x4+y2 when (x, y) 6= (0, 0) and f(0, 0) = 0.

This function is not continuous at (0, 0) and hence it is not differentiable at (0, 0).

We will show that the directional derivatives in all directions at (0, 0) exist. Let U = (u1, u2) ∈
R3, ‖ U ‖ = 1 and 0 = (0, 0). Then

lim
t→0

f(0 + tU)− f(0)
t

= lim
t→0

t3u2
1u2

t(t4u4
1 + t2u2

2)
= lim

t→0

u2
1u2

t2u4
1 + u2

2

= 0, if u2 = 0 and
u2

1

u2
, if u2 6= 0

Therefore, D0f((u1, 0)) = 0 and D0f((u1, u2)) = u2
1

u2
when u2 6= 0.

(ii) In this example we will see that the directional derivative at a point with respect to some vector
may exist and with respect to some other vector may not exist.

Consider the function f(x, y) = x
y if y 6= 0 and 0 if y = 0. Let U = (u1, u2) and ‖ U ‖= 1. It is

clear that if u1 = 0 or u2 = 0, then D0f(U) exists and is equal to 0. If u1u2 6= 0 then

lim
t→0

f(0 + tU)− f(0)
t

= lim
t→0

u1

tu2

does not exist. So, only the partial derivatives of the function at 0 exist. Note that this function
can not be differentiable at 0 (Why ?).

Problem 1: Let f(x, y) = y
|y|

√
x2 + y2 if y 6= 0 and f(x, y) = 0 if y = 0. Show that f is continuous

at (0, 0), it has all directional derivatives at (0, 0) but it is not differentiable at (0, 0).

Solution : Note that | f(x, y)− f(0, 0) |=
√

x2 + y2. Hence the function is continuous.
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For ‖ (u1, u2) ‖= 1, limt→0
f(tu1,tu2)

t = 0 if u2 = 0 and u2
|u2| if u2 6= 0. Therefore directional

derivatives in all directions exist.

Note that fx(0, 0) = 0 and fy(0, 0) = 1. If f is differentiable at (0, 0) then f ′(0, 0) = α = (0, 1).
Note that

ε(h, k) =
k
|k|
√

h2 + k2 − k
√

h2 + k2
9 0 as (h, k) → (0, 0).

For example, h = k gives (
√

2− 1) k
|k| 9 0 as k → 0. Therefore the function is not differentiable at

(0, 0). ¤

The vector (fx(X0), fy(X0), fz(X0)) is called gradient of f at X0 and is denoted by ∇f(X0).

An Application : Let us see an application of Theorem 1. Suppose f is differentiable at X0.
Then f ′(X0) = ∇f(X0) and DX0f(U) = ∇f(X0) · U = ‖ ∇f(X0) ‖ cos θ where θ ∈ [0, π] is the
angle between the gradient and U . Suppose ∇f(X0) 6= 0. Then DX0f(U) is maximum when θ = 0
and minimum θ = π. That is, f increases (respectively, decreases) most rapidly around X0 in the
direction U = ∇f(X0)

‖∇f(X0)‖ (respectively, U = - ∇f(X0)
‖∇f(X0)‖).

Example: Suppose the temperature of a metallic sheet is given as f(x, y) = 20−4x2−y2. We will
start from the point (2, 1) and find a path i.e., a plane curve, r(t) = x(t)i+ y(t)j which is a path of
maximum increase in the temperature. Note that the direction of the path is r′(t). This direction
should coincide with that of the maximum increase of f . Therefore, αr′(t) = ∇f for some α. This
implies that αx′(t) = −8x and αy′(t) = −2y. By chain rule we have dy

dx = 2y
8x = y

4x . Since the curve
passes through (2,1), we get x = 2y4.

We will now see a geometric interpretation of the derivative i.e, gradient.

Tangent Plane: Suppose f : R3 → R is differentiable and c ∈ R. Consider the surface S =
{(x, y, z) : f(x, y, z) = c}. This surface is called a level surface at the height c. (For example if
f(x, y, z) = x2 + y2 + z2 and c = 1, then S is the unit sphere.) Let P = (x0, y0, z0) be a point
on S and R(t) = (x(t), y(t), z(t)) be a differentiable (i.e., smooth) curve lying on S. With these
assumptions we prove the following result.

Theorem 28.2: If T is the tangent vector to R(t) at P then ∇f(P ) · T = 0.

Proof : Since R(t) lies on S, f(x(t), y(t), z(t)) = c. Hence df
dt = 0. By chain rule,

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂z

dz

dt
= 0 i.e., ∇f · dR

dt
= 0 i.e., ∇f · T = 0 at P. ¤

From the previous theorem we conclude the following. Note that the gradient ∇f(P ) is per-
pendicular to the tangent vector to every smooth curve R(t) on S passing through P . That is,
all these tangent vectors lie on a plane which is perpendicular to ∇f(P ). That is, ∇f(P ), when
∇f(P ) 6= 0, is the normal to the surface at P . Therefore, the plane through P with normal ∇f(P )
defined by

fx(P )(x− x0) + fy(P )(y − y0) + fz(P )(z − z0) = 0

is called the tangent plane to the surface S at P = (x0, y0, z0).

Suppose the surface is given as a graph of f(x, y), i.e., S = {(x, y, f(x, y)) : (x, y) ∈ D ⊆ R2}.
Then it can be considered as a level surface S = {(x, y, z) : F (x, y, z) = 0} where F (x, y, z) =
f(x, y)−z. Let X0 = (x0, y0), z0 = f(x0, y0) and P = (x0, y0, z0). Then the equation of the tangent
plane is fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)− (z − z0) = 0 i.e.,

z = f(X0) + f ′(X0)(X −X0), X = (x, y) ∈ R2.


