Lecture 28 : Directional Derivatives, Gradient, Tangent Plane

The partial derivative with respect to = at a point in R? measures the rate of change of the
function along the X-axis or say along the direction (1,0,0). We will now see that this notion can
be generalized to any direction in R3.

Directional Derivative : Let f : R® — R, Xy € R? and U € R? such that || U | = 1. The
directional derivative of f in the direction U at Xy = (o, Yo, 20) is defined by

f(Xo+tU) — f(Xo)
t

Dx, f(U) = 1151_1%
provided the limit exists.

It is clear that DXOf(el) = fm(X()), DXOf(eg) = fy(X()) and DXOf(eg) = fz(XO)

The proof of the following theorem is similar to the proof of Theorem 26.2.

Theorem 28.1: If f is differentiable at Xo, then Dx,f(U) exists for all U € R3, || U |= 1.
Moreover, Dx, f(U) = f'(Xo) - U = (fz(Xo), fy(Xo), f(X0)) - U.

The previous theorem says that if a function is differentiable then all its directional derivatives
exist and they can be easily computed from the derivative.

Examples :

(i) In this example we will see that a function is not differentiable at a point but the directional
derivatives in all directions at that point exist.

Define f : R? — R by f(z,y) = 2% when (z,y) # (0,0) and £(0,0) = 0.

This function is not continuous at (0,0) and hence it is not differentiable at (0, 0).

We will show that the directional derivatives in all directions at (0,0) exist. Let U = (ui,u2) €
R3, ||U | =1and 0= (0,0). Then

0-+tU) - f(0 tu? i i
t—0 t t—0 t(thu] + t?u3) =0 t2u] + uj U

Therefore, Do f((u1,0)) =0 and Do f((u1,u2)) = g when us # 0.

(7i) In this example we will see that the directional derivative at a point with respect to some vector
may exist and with respect to some other vector may not exist.

Consider the function f(z,y) = 7 if y # 0 and 0if y = 0. Let U = (u1,uz) and || U ||=1. It is
clear that if u;1 = 0 or ug = 0, then Do f(U) exists and is equal to 0. If ujug # 0 then
f(0+1tU) - f(0) u

lim = lim —
t—0 t t—0 tuo

does not exist. So, only the partial derivatives of the function at 0 exist. Note that this function
can not be differentiable at 0 (Why 7).

Problem 1: Let f(x,y) = ﬁvxz + 92 ify # 0 and f(z,y) =0 if y = 0. Show that f is continuous
at (0,0), it has all directional derivatives at (0,0) but it is not differentiable at (0,0).

Solution : Note that | f(z,y) — f(0,0) |= /22 + y2. Hence the function is continuous.



For || (ui,u2) ||= 1, lim_g M =0if ug =0 and ﬁ if ug # 0. Therefore directional
derivatives in all directions exist.

Note that f,(0,0) =0 and f,(0,0) = 1. If f is differentiable at (0,0) then f’(0,0) = a = (0, 1).

Note that
w2+ R~k
e(h, k) = N -0 as (h,k) — (0,0).
For example, h = k gives (v/2 — 1)% —+ 0 as k — 0. Therefore the function is not differentiable at
(0,0). O

The vector (fz(Xo), fy(Xo), f2(Xo)) is called gradient of f at X, and is denoted by V f(Xo).

An Application : Let us see an application of Theorem 1. Suppose f is differentiable at Xj.
Then f(Xo) = Vf(Xo) and Dx,f(U) = Vf(Xo) - U = || Vf(Xo) || cos@ where 6 € [0, 7] is the
angle between the gradient and U. Suppose V f(Xy) # 0. Then Dx, f(U) is maximum when 6 =0
and minimum 6 = 7. That is, f increases (respectively, decreases) most rapidly around Xy in the
direction U = % (respectively, U = —%).

Example: Suppose the temperature of a metallic sheet is given as f(x,y) = 20 — 422 — y%. We will
start from the point (2,1) and find a path i.e., a plane curve, r(t) = x(t)i + y(t)j which is a path of
maximum increase in the temperature. Note that the direction of the path is r/(¢). This direction
should coincide with that of the maximum increase of f. Therefore, ar’(t) = V f for some «. This
implies that ax/(t) = —8z and ay/(t) = —2y. By chain rule we have 373 = % = . Since the curve
passes through (2,1), we get z = 2y*.

We will now see a geometric interpretation of the derivative i.e, gradient.

Tangent Plane: Suppose f : R* — R is differentiable and ¢ € R. Consider the surface S =
{(z,y,2) : f(z,y,2) = c}. This surface is called a level surface at the height ¢. (For example if
f(x,y,2) = 2> + y> + 2% and ¢ = 1, then S is the unit sphere.) Let P = (z0,v0,20) be a point
on S and R(t) = (x(t),y(t), 2(t)) be a differentiable (i.e., smooth) curve lying on S. With these
assumptions we prove the following result.

Theorem 28.2: If T is the tangent vector to R(t) at P then Vf(P)-T = 0.

Proof : Since R(t) lies on S, f(x(t),y(t),z(t)) = c. Hence % = 0. By chain rule,

ofdx  Ofdy  Ofdz . dR ,
Sk = =0 de, Vf— =0 e, Vf-T=0atP. O
Ox dt ay dt Oz dt 0 e ’ Vf dt 0 e s Vf 0 at

From the previous theorem we conclude the following. Note that the gradient V f(P) is per-
pendicular to the tangent vector to every smooth curve R(t) on S passing through P. That is,
all these tangent vectors lie on a plane which is perpendicular to V f(P). That is, Vf(P), when
Vf(P) # 0, is the normal to the surface at P. Therefore, the plane through P with normal V f(P)
defined by

Fo(P)(& — 20) + f,(P)(y — yo) + f-(P)(= — z0) = 0

is called the tangent plane to the surface S at P = (xg, Yo, 20)-

Suppose the surface is given as a graph of f(z,y), i.e., S = {(z,9, f(z,v)) : (v,y) € D C R?}.
Then it can be considered as a level surface S = {(x,y,2) : F(z,y,2) = 0} where F(z,y,2) =
f(z,y)—z. Let Xo = (z0,¥0), 20 = f(z0,y0) and P = (z¢, Yo, 2z0). Then the equation of the tangent
plane is fz(xo,y0)(z — o) + fy(20,¥0) (¥ — yo) — (¢ — 20) = 0 i.e,,

2= f(Xo) + f'(Xo)(X — Xo), X = (x,y) € R%.



