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Lecture 30 : Maxima, Minima, Second Derivative Test

In calculus of single variable we applied the Bolzano-Weierstrass theorem to prove the existence of
maxima and minima of a continuous function on a closed bounded interval. Moreover, we developed
first and second derivative tests for local maxima and minima. In this lecture we will see a similar
theory for functions of several variables.

Definition : A non-empty subset D of Rn is said to be closed if a sequence in D converges then
its limit point lies in D.

For example, the sets B1 = {X0 ∈ R2 : ‖ X ‖≤ 1} and H = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0} are
closed subsets of R2. However, the sets S1 = {X ∈ R2 : ‖ X ‖ < 1} and H+ = {(x, y) ∈ R2 : x >
0, y > 0} are not closed.

Definition : Let D ⊆ Rn and X0 ∈ D. We say that X0 is an interior point of D if there exists
r > 0 such that the neighborhood Nr(X0) = {X ∈ Rn : ‖ X0 −X ‖ < r} is contained in D.

For example, all the points of S1 are interior points of B1. Similarly, all the points of H+ are
interior points of H.

The notions of maxima, minima, local maxima and local minima are similar to the ones defined
for the functions of one variable. The proof of the following theorem is similar to the proof of the
existence of maximum and minimum of a continuous function on a closed bounded interval.

Theorem 30.1(Existence of Maxima and Minima): Let D be a closed and bounded subset of
R2 and f : D → R be continuous. Then f has a maximum and a minimum in D.

Theorem 30.2(Necessary Condition for Local Maximum and Minimum): Suppose D ⊆
R2, f : D → R and (x0, y0) is an interior point of D. Let fx and fy exist at the point (x0, y0). If
f has a local maximum or local minimum at (x0, y0) then fx(x0, y0) = fy(x0, y0) = 0.

Proof : Note that (the one variable) functions f(x, y0) and f(x0, y) have local maximum or
minimum at x0 and y0 respectively. Therefore, the derivatives of these functions are zero at x0 and
y0 respectively. That is, fx(x0, y0) = fy(x0, y0) = 0. ¤

Note that the conditions given in the previous results are not sufficient. For example, consider
the function f : R2 → R defined by f(x, y) = xy. Note that fx(0, 0) = fy(0, 0) = 0 but (0, 0) is
neither a local minimum nor a local maximum for f .

Second Derivative Test for Local Maximum and Local Minimum : Suppose D ⊆ R2 and
f : D → R. Suppose fx and fy are continuous and they have continuous partial derivatives on D.
With these assumptions we prove the following result.

Theorem 30.3: Let (x0, y0) be an interior point of D and fx(x0, y0) = fy(x0, y0) = 0. Suppose
(fxxfyy − f2

xy)(x0, y0) > 0. Then

(i) if fxx(x0, y0) > 0 then f has a local minimum at (x0, y0).

(ii) if fxx(x0, y0) < 0 then f has a local maximum at (x0, y0).

Proof (*): We prove (i) and the proof of (ii) is similar. Suppose fxx(x0, y0) > 0 and (fxxfyy −
f2

xy)(x0, y0) > 0. Then there exists a neighborhood N of (x0, y0), such that

fxx(x, y) > 0 and (fxxfyy − f2
xy)(x, y) > 0 for all (x, y) ∈ N.

Let (x0 + h, y0 + k) ∈ N . Them by the Extended MVT (applying over N, which is possible), there
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exists some C lying in the line joining (x0 + h, y0 + k) and (x0, y0) such that

f(x0 + h, y0 + k)− f(x0, y0) = Q(C) =
1
2
(h2fxx + 2hkfxy + k2fyy)(C).

Note that 2fxx(C)Q(C) = {(hfxx + kfxy)(C)}2 + k2(fxxfyy − f2
xy)(C) > 0.

Since fxx(C) > 0 we have Q(C) > 0 and hence f(x0 + h, y0 + k) > f(x0, y0). Therefore, f has a
local minimum at (x0, y0). ¤

Remarks : 1. If (x0, y0) is an interior point of D, fx(x0, y0) = fy(x0, y0) = 0 and (fxxfyy −
f2

xy)(x0, y0) < 0, then one can show that in every neighborhood of (x0, y0) we can find two points
(x1, y1) and (x2, y2) such that f(x1, y1) > f(x0, y0) and f(x2, y2) < f(x0, y0), that is (x0, y0) is a
saddle point.

2. The above test is inconclusive when fx(x0, y0) = fy(x0, y0) = (fxxfyy − f2
xy)(x0, y0) = 0.

Examples : 1. The functions f1(x, y) = −(x4 + y4) and f2(x, y) = x4 + y4 satisfy the above
equation for (x0, y0) = (0, 0) but f1 has a local maximum at (0, 0) and f2 has a local minimum at
(0, 0).

2. Consider the function f(x, y) = (x + y)2 − x4. This function satisfies the above equation for
(x0, y0) = (0, 0) but it has neither a local maximum nor a local minimum at (0, 0). In fact, (0, 0) is a
saddle point. This can be verified as follows. Note that for 0 < x < 1, f(x, x) > 0 and f(x,−x) < 0.

3. Let f(x, y) = x sin y. Here fx(x0, y0) = fy(x0, y0) = 0 for (x0, y0) = (0, nπ), n ∈ N. Note that
(fxxfyy − f2

xy)(x0, y0) < 0. Therefore, the points (0, nπ), n ∈ N are saddle points.

Problem 1: Let f(x, y) = 3x4−4x2y +y2. Show that f has a local minimum at (0, 0) along every
line through (0, 0). Does f have a minimum at (0, 0)? Is (0, 0) a saddle point for f?

Solution : Let f(x, y) = 3x4 − 4x2y + y2. Along, the x-axis, the local minimum of the function
is at (0, 0). Let x = r cos θ and y = r sin θ, for a fixed θ 6= 0, π (or let y = mx). Then,
f(r cos θ, r sin θ) = 3r4 sin4 θ− 4r3 cos2 θ sin θ + r2 sin2 θ which is a function of one variable. By the
second derivative test (for functions of one variable), we see that (0, 0) is a local minima. Since,
f(x, y) = (3x2 − y)(x2 − y), we see that in the region between the parabolas 3x2 = y and y = x2,
the function takes negative values and is positive everywhere else. Thus, (0, 0) is a saddle point for
f .

Problem 2: Let D = [−2, 2]× [−2, 2] and f : D → R be defined as f(x, y) = 4xy− 2x2− y4. Find
absolute maxima and absolute minima of f in D.

Solution (Hints) : Note that fx(x0, y0) = fy(x0, y0) = 0 for (x0, y0) = (0, 0), (1, 1) or (−1,−1).
Since these points lie in the interior of D, these are the candidates for maxima and minima for f
on the set of interiors of D.

Now we have to check the behavior of the function over the boundary of D. Note that (x, y) ∈ D
is a boundary point if and only if x = ±2 or y = ±2. So we have to consider the functions
f(2, y), f(−2, y), f(x, 2) and f(x,−2) over the interval [−2, 2]. For example, f(2, y) = 8y−8−y4, y ∈
[−2, 2], has absolute maximum at y = 3

√
2 and absolute minimum at y = −2. So, (2, 3

√
2) and

(2,−2) are the candidates for maxima and minima on the boundary line {(2, y) : y ∈ [−2, 2]}. Find
all possible candidates for maxima and minima and choose the maxima and minima from these
candidates.

The absolute maximum value of f on D is 1 which is obtained at (1, 1) and (−1,−1). The
absolute minimum value of f on D is -40 and which is obtained at (2,−2) and (−2, 2).


