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Lecture 24 : Calculus of vector valued functions

In the previous lectures we had been dealing with functions from a subset of R to R. In this
lecture we will deal with the functions whose domain is a subset of R and whose range is in R3 (or
Rn). Such functions are called vector valued functions of a real variable.

If the values of a function F are in R3, then each F (t) has 3 components, for example F (t) =
((f1(t), f2(t), f3(t)). Therefore, each vector valued function F is associated with 3 real valued
functions f1, f2 and f3 and in this case we write F = (f1, f2, f3).

Let us see some examples of vector valued functions.

Examples: 1. Let X0, P ∈ R3 and P 6= 0. Consider the vector valued function F (t) = X0 + tP .
It is clear that the range of the vector valued function is the line though the point X0 parallel to
the vector P .

2. Consider the vector valued functions F1(t) = (cost, sint), 0 ≤ t ≤ 2π and F2(t) = (cost, sint, t),
∞ < t < ∞. We can geometrically visualize the ranges of F1 and F2 as t varies. In fact F1(t) varies
on a circle and F2(t) varies on a helix. Both these curves are particular cases of parametric curves.

Parametric curves: Let I be an interval and F : I → R3. The set of points {F (t) : t ∈ I} is
called the graph of the function F . If F is continuous (for the definition see below) then such a
graph is called a curve or parametric curve with the parameter t.

From the previous definition it is clear that each continuous vector valued function corresponds
to a curve. Naturally one expects that some geometric properties of the curves can be investigated
by using some properties of the vector valued functions.

In this lecture we will extend the basic concepts of calculus, such as limit, continuity and
derivative, to vector valued functions and see some applications to the study of curves.

Limits and derivatives:

Let F = (f1, f2, f3) be a vector valued function and L = (l1, l2, l3).

We say that limt→t0 F (t) = L if limt→t0 ‖ F (t)− L ‖= 0.

Proposition: limt→t0 F (t) = L if and only if limt→t0 fi(t) = li for i = 1, 2, 3.

Proof: This follows from the fact that
∑3

i=1 | fi(t)−li |2→ 0 ⇔ | fi(t)−li |→ 0, i = 1, 2, 3. ¤

From the previous result it follows that limt→t0 F (t) = (limt→t0 f1(t), limt→t0 f2(t), limt→t0 f3(t))
whenever the component on the right is meaningful.

We say that F is continuous at t0 if limt→t0 F (t) = F (t0). One can show that F is continuous
at t0 if and only if each of the component function fi is continuous at t0.

We say that F is differentiable at t0 if limh→0
F (t0+h)−F (t0)

h exists. The limit is called the
derivative of F at t0 and is denoted by F ′(t0). Note that F is differentiable at t0 if and only if fi

is differentiable at t0 for all i = 1, 2, 3. Moreover, F ′(t0) = (f ′1(t0), f
′
2(t0), f

′
3(t0)).

Tangent Vector: As in the case of a real valued function, we will see that the derivative F ′(t0) is
related to the concept of tangency. Suppose F is differentiable at t0 and F ′(t0) 6= 0. Then

F ′(t0) = lim
h→0

1
h

(F (t0 + h)− F (t0)).
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Geometrically, one can visualize that the vector 1
h(F (t0 +h)−F (t0)), which is parallel to the vector

F (t0 + h) − F (t0), moves to be a tangent vector as h → 0. In view of this we have the following
definition.

Definition: Suppose C is a curve defined by a differentiable vector valued function R. Suppose
R′(t0) 6= 0. The vector R′(t0) is called a tangent vector to C at F (t0) and the line X(t) =
R(t0) + tR′(t0) is called the tangent line to C at R(t0).

Example: Let us find the equation of the plane perpendicular to the circular helix R(t) =
(cos t, sin t, t) at t0 = π

3 . The equation of the plane passing through R(π
3 ) and perpendicular

to R′(π
3 ) is the required plane. So the plane is R′(π

3 ) · (x, y, z) = R′(π
3 ) ·R(π

3 ).

Arc length for space curves: We have seen a formula for evaluating the length of a plane
curve. The formula can be extended to the space curves. Let C be a space curve defined by
R(t) = x(t)i + y(t)j + z(t)k, a ≤ t ≤ b. Throughout this lecture we will assume that R′ is
continuous. The length of the curve C is defined to be

L =
∫ b

a

√
x′(t)2 + y′(t)2 + z′(t)2dt =

∫ b

a
‖ dR

dt
‖ .

Arc length parameter: Let R(t0) be a fixed point on the curve C. For t, the directed distance
measured along C from R(t0) and up to R(t) is s(t) =

∫ t
t0

√
x′(τ)2 + y′(τ)2 + z′(τ)2dτ . Each value

of s corresponds to a point on C and this parametrizes C with respect to s, the arc length parameter.
By the first FTC we have,

ds

dt
= ‖ dR

dt
‖ .

This is expected. Because, if we consider R(t) is the position vector of a particle moving along C,
then v(t) = R′(t) is the velocity vector and a(t) = v′(t) is the acceleration vector. The speed with
which the particle moves along its path is the magnitude of v.

Unit tangent vector: The unit tangent vector of R(t) is T = R′(t)
‖R′(t)‖ whenever ‖ R′(t) ‖6= 0.

From the derivation of ds
dt , we get T =

dR
dt
ds
dt

. Now can we write

T =
dR

dt

dt

ds
=

dR

ds
?

The second equality of the above equation follows from the chain rule and the first equation follows
from the following theorem.

Theorem: Let f : [a, b] → R, f ′(x) 6= 0 for all x ∈ [a, b]. Then f−1 is continuous, differentiable
and (f−1)

′
(f(x)) = 1

f ′(x) .

Proof (*): Use the sequential argument and Bolzano-Weierstrass theorem to prove that f−1 is
continuous. Let f : [a, b] → [c, d], c ≤ y0 ≤ d, y0 = f(x0) and y = f(x) for some x ∈ [a, b]. Suppose
y 6= y0. Then,

f−1(y)− f−1(y0)
y − y0

=
x− x0

f(x)− f(x0)
=

1
f(x)−f(x0)

x−x0

Now let y → y0 and use the continuity of f−1 to get the result. ¤

Let us go back to the question we asked above. Let us work with the curve C such that s(t)
increases as t > t0 increases, that is ds

dt > 0. By the previous theorem we have, dt
ds = 1

ds
dt

.


