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Lecture 36: Line Integrals; Green’s Theorem

Let R : [a, b] → R3 and C be a parametric curve defined by R(t), that is C(t) = {R(t) : t ∈ [a, b]}.
Suppose f : C → R3 is a bounded function. In this lecture we define a concept of integral for the
function f . Note that the integrand f is defined on C ⊂ R3 and it is a vector valued function. The
integral of such a type is called a line integral or a contour integral.

Definition: Suppose R is a differentiable function. The line integral of f along C is denoted by
the symbol

∫
C f · dR and is defined by ∫

C f · dR =
∫ b
a f(R(t)) ·R′(t)dt

provided the RHS integral exists.

The line integrals appear in several physical situations in which the behavior of a vector is
studied along a curve such as work done by a force over a curve, flux of the fluid’s velocity vector
across a curve and so on. We will not deal with such physical situations in this course, however,
we will see that the line integrals are useful to calculate certain types of double integrals and areas
of plane regions enclosed by parametric curves.

Suppose f = (f1, f2, f3) and R(t) = (x(t), y(t), z(t)) then the line integral
∫
C f · dR is also

written as
∫
C f1dx + f2dy + f3dz or

∫
C f1(x, y, z)dx + f2(x, y, z)dy + f3(x, y, z)dz.

Example 1: Let us compute the line integral
∫
C f · dR from (0, 0, 0) to (1, 2, 4) if f = x2i + yj +

(xz − y)k
(a) along the line segment joining these two points.
(b) along the curve given parametrically by x = t2, y = 2t, z = 4t3.

Solution: (a) Parameterize the line segment as follows: x = t, y = 2t, z = 4t. Then
∫
C f ·dR =

∫
C x2dx+ydy+(xz−y)dz =

∫ 1
0 t2dt+(2t)(2dt)+(4t2−2t)(4dt) =

∫ 1
0 (17t2−4t)dt = 11

3 .

(b) The parametrization is already given. Repeat the steps given in the solution of (a).

Problem 1: Evaluate
∫
C

−ydx+xdy
x2+y2 , where C := {(x, y) : x2 + y2 = r2}, r > 0.

Solution: Let us consider C = (rcost, rsint), 0 ≤ t ≤ 2π. Then
∫
C

−ydx+xdy
x2+y2 =

2π∫
0

sin2t+cos2t
sin2t+cos2t

dt = 2π

Remark: One can show that a line integral is independent of the parametrization (that preserves
the orientation).

The second FTC for line integrals: The second FTC for real functions states that if f : [a, b] →
R and f ′ is continuous then

∫ b
a f ′(t) = f(b) − f(a). This says that the value of the integral (of

some function) depends only on the end points and not on the points between them. We will first
extend this result to line integrals.

Theorem: Let S ⊂ R3, f : S → R be differentiable on S and the gradient ∇f be continuous. Let
A,B be two points in S. Let C = {R(t) : t ∈ [a, b]} be a curve lying in S and joining the points A
and B, that is R(a) = A and R(b) = B. Suppose R′t) is continuous on [a, b]. Then

∫
C ∇f · dR = f(B)− f(A).

Proof: Let g(t) = f(R(t). Then
∫
C ∇f ·dR =

∫ b
a ∇f(R(t)) ·R′(t)dt =

∫ b
a g′(t)dt = g(b)−g(a) = f(R(b))−f(R(a)) = f(B)−f(A).¤
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Example 2: Since
∫
C ydx + xdy =

∫
C ∇(xy) · (dx, dy), by the previous theorem, the line integral

is independent of path joining any two points.

Green’s Theorem: The above theorem states that the line integral of a gradient is independent
of the path joining two points A and B. Moreover, the line integral of a gradient along a path
joining two points A and B is expressed in terms of the values of f at the boundary points A and B.
This is analogous to the second FTC of real functions. We will now see a two dimensional analog
of the second FTC theorem. It states that a double integral (of certain type of function) over a
plane region R can be expressed as a line integral (of some function) along the boundary curve of
R. This result is called Green’s theorem. To present the formal statement of Green’s theorem we
need the following definitions.

Let R : [a, b] → R3 be continuous.

Simple closed curve: If R(a) = R(b) then the curve described by R is closed. A closed curve such
that R(t1) 6= R(t2) for every t1, t2 in (a, b] is called a simple closed curve.

Piecewise smooth curve: If R′ exists and continuous then the curve described by R is called smooth.
The curve is called piecewise smooth if the interval [a, b] can be partitioned into a finite number of
subintervals and in each of which the curve is smooth.

Theorem: Let C be a piecewise smooth simple closed curve in the xy-plane and let D denote the
closed region enclosed by C. Suppose M,N, ∂N

∂x and ∂M
∂y are real valued continuous functions in an

open set containing D. Then

∫∫
D

(
∂N
∂x − ∂M

∂y

)
dxdy =

∮
C(Mi + Nj) · dR =

∮
C Mdx + Ndy

where the line integral is taken around C in the counterclockwise direction.

Remark: In the above theorem we have made some casual statements such as “closed region
enclosed by C” and “counterclockwise direction”. These are intuitively evident, however, formal
definitions and some explanations are required which we are not going to provide. We will also
make a few such statements in the next two or three lectures. So we have to be aware that our
treatment is not completely rigorous. Proof of the previous theorem for certain special regions is
given in the text book and the proof in the general form is not easy.

An application. Area expressed as a line integral: Let C be a simple (piecewise smooth) closed
curve and D be the region enclosed by C. Let N(x, y) = x

2 and M(x, y) = −y
2 , then by Green’s

theorem the area of D is

a(D) =
∫∫
D

dxdy =
∫∫
D

(Nx −My)dxdy =
∫ b
a Mdx + Ndy = 1

2

∫
C −ydx + xdy.

Examples: 1. Let us show that the value of
∫
C xy2dx + (x2y + 2x)dy around any square depends

only on the size of the square C and not on its location in the plane. Let R be a square enclosed
by the boundary C. By Green’s theorem

∫
C

xy2dx + (x2y + 2x)dy =
∫∫
R

2dxdy = 2 Area(R).

2. We will use the formula given above to find the area bounded by the ellipse C : x2

a2 + y2

b2
= 1.

Parametrize C by (a cos t, b sin t), 0 ≤ t ≤ 2π. Then the area is

1
2

∫
C −ydx + xdy = 1

2

∫ 2π
0 −(b sin t)(−a sin t)dt + (a cos t)(b cos t)dt = 1

2

∫ 2π
0 abdt = abπ.


