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Lecture 38: Stokes’ Theorem

As mentioned in the previous lecture Stokes’ theorem is an extension of Green’s theorem to surfaces.
Green’s theorem which relates a double integral to a line integral states that

∫∫
D

(
∂N
∂x − ∂M

∂y

)
dxdy =

∮
C Mdx + Ndy

where D is a plane region enclosed by a simple closed curve C. Stokes’ theorem relates a surface
integral to a line integral. We first rewrite Green’s theorem in a different form as mentioned in the
previous lecture. Consider the vector field F : R2 → R2 defined by F (x, y) = M(x, y)i + N(x, y)j.
Then curlF = ∇× F =

(
∂N
∂x − ∂M

∂y

)
k. Therefore Green’s theorem is stated as follows:

∫∫
D (curlF ) · k dxdy =

∮
C F · dR. (1)

We will extend this form of Green’s theorem to a vector field F defined on a surface S having the
boundary curve C. We need the following definitions.

Smooth Surface: Let S = r(u, v) be a parametric surface defined on a parameter domain T . We
say that S is smooth if ru and rv are continuous on T and ru × rv is never zero on T . A level
surface S defined by f(x, y, z) = c is said to be smooth if ∇f is continuous and never zero on S

We have already seen that the vectors ru × rv and ∇f are normals to the parametric surface
and the level surface respectively.

Orientable Surface: A smooth surface is said to be orientable if there exists a continuous unit
normal vector function defined at each point of the surface.

Basically a surface is oriented by orienting its normals in a continuous manner. In practice, we
consider an orientable surface as a smooth surface with two sides. For example spheres, planes and
paraboloids are orientable surfaces. The Möbious strip is not an orientable surface and is not one
sided.

We will be dealing with only orientable surfaces. Let S be an orientable surface with the
boundary curve C (see Figure 1). Since S has two sides, consider a side of the surface, that is,
consider a normal n to the surface S. With respect to this normal (that is corresponding to a side
of the surface), we define an orientation on C. We need this orientation to evaluate the line integral
involved in Stokes’ theorem.

Orientation on the boundary w.r.to a normal: Orientation is formally defined as follows. Suppose,
for example, S := r(u, v) is a parametric (orientable) surface defined by a one-one map r on the
parameter domain T . Consider the unit normal n = ru×rv

‖ru×rv‖ of the surface S. Let Γ be the boundary
of T and C = r(Γ) (see Figure 1). If we assume that Γ is oriented in the counterclockwise direction
then we get an orientation for C inherited from Γ through the mapping r. This orientation for C
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is considered to be the orientation w.r.to n.

In practice, we get the orientation of the boundary curve (w.r.to a given n) using the right-hand
rule: If we wrap around the surface with the right hand by pointing the thumb in the direction of
the normal then roughly the fingers of the right hand are pointing towards the orientation of the
curve. One can also use the following method. Consider a person walking on C by keeping his or
her head towards the direction of the normal and the surface to the left. The orientation of the
curve is the direction in which the person is walking on C (see Figure 1). For example, if S is a
plane region and n = k then the orientation of C w.r.to n is the counterclockwise direction. Let us
state Stokes’ theorem.

Theorem: Let S be a (piecewise) smooth orientable surface and a piecewise simple closed curve
C be its boundary. Let F (x, y, z) = P (x, y, z)i+Q(x, y, z)j +R(x, y, z)k be a vector field such that
P, Q and R are continuous and have continuous first partial derivatives in an open set containing
S. If n is a unit normal to S, then

∫∫
S (curlF ) · n dσ =

∮
C F · dR (2)

where the line integral is taken around C in the direction of the orientation of C w.r.to n.

Remarks: 1. The value of the surface integral in (2) depends only on the boundary C. This
means that the shape of the surface is irrelevant. So Stokes theorem is an analog of the 2nd FTC.

2. If S is a plane region, then the identity given in (2) reduces to the identity given in (1). Therefore
Stokes’ theorem is consider to be a direct extension of Green’s theorem.

3. For a closed oriented surface such as sphere or donut, there is no boundary and in this case∫∫
S (curlF ) · n dσ = 0. For example for a sphere, this can be seen by cutting the sphere into two

hemispheres. If we apply Stokes’ theorem to each and add the resulted identities, the two boundary
integrals cancel and we get what we claimed.

4. Stokes’ theorem can also be extended to a smooth surface which has more than one simple closed
curve forming the boundary of the surface.

Problem: Let S be the part of the cylinder z = 1 − x2, 0 ≤ x ≤ 1, −2 ≤ y ≤ 2. Let C be the
boundary curve of the surface S. Let F (x, y, z) = yi + yj + zk. Find the unit outer normal to
S, curl F and evaluate

∮
C F · dR where C is oriented counterclockwise as viewed from above the

surface.

Solution: The surface is given by z = 1 − x2 (see Figure 2). This surface can be considered as
a graph of the function f(x, y) = 1 − x2 or a parametric surface r(x, y) = (x, y, f(x, y)). An unit
normal is rx×ry

‖rx×ry‖ = −fx−fy+k√
1+f2

x+f2
y

= 2xi+k√
1+4x2

. This has to be the outer normal, because if we calculate

at (0, 1), it coincides with the outer normal k. Simple calculation shows that curlF = −k. We will
use Stokes’ theorem to solve this problem. Note that curlf · n = −1√

1+4x2
. By Stokes’ theorem

∮
C F · dR =

∫∫
S

−1√
1+4x2

dσ =
∫∫

R
−1√

1+4x2

√
1 + f2

x + f2
y dxdy =

∫∫
R−1dxdy =

∫ 1
0

∫ 2
−2−1dydx. ¤

Remarks: 1. The above problem can be done directly by calculating the line integral. In that
case we have to parametrize the boundary which consists of four smooth curves. One has to be
careful with the direction in each piece. The calculation also becomes lengthy.

2. We can also consider the surface given in the previous problem as a level surface defined by
f(x, y, z) = z − 1 + x2 = 0. In this case an unit normal is n = ∇f

‖∇f‖ = 2xi+k√
1+4x2

.


