Practice Problems 20: Area in Polar coordinates, Volume of a solid by slicing

- 1. Consider the curves $r = \cos 2\theta$ and $r = \frac{1}{2}$.
 - (a) Find the points of intersection of the curves.
 - (b) Show that $(-\frac{1}{2}, \frac{\pi}{3}), (-\frac{1}{2}, \frac{2\pi}{3}), (-\frac{1}{2}, \frac{4\pi}{3})$ and $(-\frac{1}{2}, \frac{5\pi}{3})$ satisfy the equations $r = -\frac{1}{2}$ and $r = \cos 2\theta$
- 2. Find the areas of the regions enclosed by the following curves.
 - (a) $r = 1 + \cos \theta$
 - (b) $r^2 = 9\cos 2\theta$
 - (c) $r = 3\sin 3\theta$
- 3. In each of the following cases, find the area of the region that lies inside both the curves.
 - (a) $r=2, r=4\sin\theta$
 - (b) $r = 2\sin\theta, \ r = 2 2\sin\theta$
 - (c) $r = 3, r = 6\cos 2\theta$.
- 4. In each of the following cases, find the area of the region that lies inside the first curve and outside the second curve.
 - (a) $r = 2, r = 4 \sin \theta$.
 - (b) $r = 2\sin\theta$, $r = 2 2\sin\theta$
- 5. Find the areas of the regions described by the following sets.
 - (a) $\{(r,\theta): 0 \le r \le 2\sin\theta, \ 0 \le \theta \le \frac{\pi}{6}\} \bigcup \{(r,\theta): 0 \le r \le 2 2\sin\theta, \ \frac{\pi}{6} \le \theta \le \frac{\pi}{2}\}$
 - (b) $\{(r,\theta): 0 \le r \le 2\sin 2\theta, \ 0 \le \theta \le \frac{\pi}{12}\} \bigcup \{(r,\theta): 0 \le r \le 1, \ \frac{\pi}{12} \le \theta \le \frac{\pi}{4}\}$
- 6. Find the area of the region inside the outer loop and outside the inner loop of $r = 2+4\cos\theta$.
- 7. The base of a solid is the region bounded by $x = 0, y = 0, x = \frac{\pi}{2}$ and the curve $y = \sin x$. Each cross section of the solid perpendicular to the x-axis is an equilateral triangle with one side in the base of the solid. Find the volume of the solid.
- 8. A pyramid has a square base. Suppose the height of the pyramid is 4 meters and the side of the square base is 2 meters. Determine the volume of the pyramid by slicing method.
- 9. Consider the sphere of radius r centered at 0 and the two great circles of the sphere lying on the xy and xz planes. A part of the sphere is shaved off in a such a manner that the cross section of the remaining part, perpendicular to the x-axis, is a square with vertices on the great circles. Compute the volume of the remaining part.
- 10. Find the volume of the solid enclosed by the cylinders $x^2 + y^2 = 1$ and $x^2 + z^2 = 1$.
- 11. Find the volume of the solid enclosed by the ellipsoid $\frac{x^2}{9} + \frac{y^2}{4} + z^2 = 1$ and the planes $y = \sqrt{3}$ and y = 1.

Practice Problems 20: Hints/Solutions

1. Solving $r=\cos 2\theta$ and $r=\frac{1}{2}$ gives $\theta=\frac{\pi}{6}+\pi k$ and $\theta=\frac{5\pi}{6}+\pi k$, $k\in\mathbb{Z}$. Therefore we get, $\theta=\frac{\pi}{6},\frac{5\pi}{6},\frac{7\pi}{6}$ and $\frac{11\pi}{6}$. By symmetry, we see that the points of intersection occur at $\theta=\frac{\pi}{3},\frac{2\pi}{3},\frac{4\pi}{3}$ and $\frac{5\pi}{3}$ (see Figure 1). We can also see, by solving the equations $r=-\frac{1}{2}$ and $r=\cos 2\theta$, that the points of intersection occur at $\theta=\frac{\pi}{3}+\pi k$ and $\theta=\frac{2\pi}{3}+\pi k$, $k\in\mathbb{Z}$, that is $\theta=\frac{\pi}{3},\frac{2\pi}{3},\frac{4\pi}{3}$ and $\frac{5\pi}{3}$.

- 2. (a) The area is $\int_0^{2\pi} \frac{1}{2} (1 + \cos \theta)^2 d\theta$. See Figure 2(a)
 - (b) The area is $4\int_0^{\frac{\pi}{4}} \frac{1}{2} (9\cos 2\theta) d\theta$. See Figure 2(b)
 - (c) The area is $3\int_0^{\frac{\pi}{3}} \frac{1}{2} (3\sin 3\theta)^2 d\theta$. See Figure 2(c)
- 3. (a) Solving $2 = 4\sin\theta$ and $\theta \in [0, \frac{\pi}{2}]$ implies that $\theta = \frac{\pi}{6}$. The required area is $2\left[\int_0^{\frac{\pi}{6}} \frac{1}{2} 4^2 \sin^2\theta d\theta + \int_{\frac{\pi}{6}}^{\frac{\pi}{6}} \frac{1}{2} 2^2 d\theta\right]$. See Figure 3(a).
 - (b) Solving $2\sin\theta = 2 2\sin\theta$ and $\theta \in [0, \frac{\pi}{2}]$ implies that $\theta = \frac{\pi}{6}$. The required area is $2\left[\int_0^{\frac{\pi}{6}} \frac{1}{2} (2\sin\theta)^2 d\theta + \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (2 2\sin\theta)^2 d\theta\right]$. See Figure 3(b)
 - (c) Solving $6\cos 2\theta=3$ and $\theta\in[0,\frac{\pi}{2}]$ implies that $\theta=\frac{\pi}{6}$. The required area is $8\left[\int_0^{\frac{\pi}{6}}\frac{1}{2}3^2d\theta+\int_{\frac{\pi}{6}}^{\frac{\pi}{4}}\frac{1}{2}(6\cos 2\theta)^2d\theta\right]$. See Figure 3(c)
- 4. (a) Solving $2 = 4 \sin \theta$ implies that $\theta = \frac{\pi}{6}$ and $\theta = \frac{5\pi}{6}$. The area is $\int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \frac{1}{2} (16 \sin^2 \theta 4) d\theta$. See Figure 4(a).
 - (b) Solving $2\sin\theta = 2 2\sin\theta$ and $\theta \in [0, \frac{\pi}{2}]$ implies that $\theta = \frac{\pi}{6}$. The required area is $2\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{1}{2} \left[4\sin^2\theta (2 2\sin\theta)^2 \right] d\theta$. See Figure 4(b)
- 5. (a) Solving $2\sin\theta = 2 2\sin\theta$ and $\theta \in [0, \frac{\pi}{2}]$ implies that $\theta = \frac{\pi}{6}$. The required area is $\int_0^{\frac{\pi}{6}} \frac{1}{2} (2\sin\theta)^2 d\theta + \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (2 2\sin\theta)^2 d\theta.$ See Figure 5(a)
 - (b) Solving $2\sin 2\theta = 1$ and $\theta \in [0, \frac{\pi}{2}]$ implies that $\theta = \frac{\pi}{12}$. The required area is $\int_0^{\frac{\pi}{12}} \frac{1}{2} (2\sin 2\theta)^2 d\theta + \frac{1}{2} \int_{\frac{\pi}{12}}^{\frac{\pi}{4}} d\theta$. See Figure 5(b)
- 6. Solving r = 0 and $r = 2 + 4\cos\theta$ gives that $\theta = \frac{2\pi}{3}$ and $\theta = \frac{4\pi}{3}$. See Figure 6. The required area is $2\left[\int_0^{\frac{2\pi}{3}} \frac{1}{2}(2 + 4\cos\theta)^2 d\theta \int_{\pi}^{\frac{4\pi}{3}} \frac{1}{2}(2 + 4\cos\theta)^2 d\theta\right]$ or $2\left[\int_0^{\frac{2\pi}{3}} \frac{1}{2}(2 + 4\cos\theta)^2 d\theta \int_{\frac{2\pi}{3}}^{\frac{\pi}{3}} \frac{1}{2}(2 + 4\cos\theta)^2 d\theta\right]$.
- 7. For every $x \in [0, \frac{\pi}{2}]$, $A(x) = \frac{\sqrt{3}}{4}\sin^2 x$. The volume is $\int_0^{\frac{\pi}{2}} A(x) dx = \frac{\sqrt{3}}{16}\pi$. See Figure 7.
- 8. Let the pyramid be as in Figure 8. The area of the cross section (of the solid) by the plane x = t is $A(t) = \frac{t^2}{4}$. The required volume is $\int_0^4 A(t)dt$.
- 9. The cross section of the solid by the plane x=t is a square with side $\sqrt{2(r^2-t^2)}$. Hence the area of the cross section $A(t)=2(r^2-t^2)$. The required volume is $\int_{-r}^{r} A(t)dt=\frac{8r^3}{3}$. See Figure 9.
- 10. See Figure 10. Observe that the solid lies between the planes x=-1 and x=1. For any fixed $t\in [-1,1]$ the cross section of the solid by the plane x=t is a square given by $\{(t,y,z): |y|\leq \sqrt{1-t^2} \text{ and } |z|\leq \sqrt{1-t^2}\}$. Therefore the area of the cross section $A(t)=4(1-t^2)$. The required volume is $\int_{-1}^1 A(t)dt=4\int_{-1}^1 (1-t^2)dt=\frac{16}{3}$.
- 11. For any $t \in [1, \sqrt{3}]$, the cross section of the solid by the plane y = t is the ellipse $\frac{x^2}{9} + z^2 = 1 \frac{t^2}{4}$ and its area A(t) is $3\pi(1 \frac{t^2}{4})$. The required volume is $\int_1^{\sqrt{3}} 3\pi(1 \frac{t^2}{4}) dt$.