PP 27: Functions of several variables: Differentiabilty and Chain Rule

- 1. In each of the following cases discuss the differentiabilty of f at (0,0) where f(x,y), for $(x,y) \in \mathbb{R}^2$, is
 - (a) |x| + |y|
 - (b) ||(x,y)||
 - (c) 0 if $xy \neq 0$ and 1 if xy = 0
 - (d) $\sqrt{|xy|}$
 - (e) $\frac{x^2y}{\sqrt{x^2+y^2}}$ if $(x,y) \neq (0,0)$ and f(0,0) = 0.
 - (f) $\frac{2x^2y}{x^2+y^2}$ if $(x,y) \neq (0,0)$ and f(0,0) = 0.
 - (g) $x^2 + \sin y + y^2 e^x$
- 2. Let f(x,y) = |xy| for all $(x,y) \in \mathbb{R}^2$. Show that
 - (a) f is differentiable at (0,0.)
 - (b) $f_x(0, y_0)$ does not exist if $y_0 \neq 0$.
- 3. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x,y) = (x-y)^2 \sin \frac{1}{x-y}$ if $x \neq y$ and f(x,x) = 0. Show that
 - (a) f_x and f_y exist at all points of \mathbb{R}^2 .
 - (b) f is differentiable at (0,0).
 - (c) f_x and f_y are not continuous on the line y = x.
- 4. Let $z = f(x, y), x = r \cos \theta$ and $y = r \sin \theta$.
 - (a) Show that $\frac{\partial z}{\partial r} = \frac{\partial f}{\partial x} \cos \theta + \frac{\partial f}{\partial y} \sin \theta$ and $\frac{1}{r} \frac{\partial z}{\partial \theta} = -\frac{\partial f}{\partial x} \sin \theta + \frac{\partial f}{\partial y} \cos \theta$.
 - (b) If $f(x,y) = x^2 + 2xy$, show that $\frac{\partial z}{\partial \theta} = 2(x^2 xy y^2)$.
- 5. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be differentiable.
 - (a) For (x_0, y_0) , $(h, k) \in \mathbb{R}^2$, define $\phi : [0, 1] \to \mathbb{R}$ by $\phi(t) = f(x_0 + th, y_0 + tk), t \in [0, 1]$. Show that ϕ is differentiable and $\phi' = hf_x + kf_y$.
 - (b) Suppose f(1,2) = f(3,4) = 0. Show that there exists a point (x_0, y_0) lying in the line segment joining (1,1) and (3,4) such that $f_x(x_0, y_0) = -f_y(x_0, y_0)$.
- 6. An ice block of rectangular shap is melting. Suppose that at a given instant, the block has a height of 5 ft, a length of 10 ft and a width of 12 ft. If each of the dimension is decreasing at a rate of 5 ft per hour, at what rate is the volume of the block decreasing at the given instant?
- 7. (*) Let $f: \mathbb{R}^2 \to \mathbb{R}$ and $(x_0, y_0) \in \mathbb{R}^2$. Suppose that f_x and f_y exist in a neighborhood $N_{\epsilon}(x_0, y_0) = \{(x, y) : \|(x, y) (x_0, y_0)\| < \epsilon\}$ of (x_0, y_0) for some $\epsilon > 0$. Suppose that f_x, f_y exist on $N_{\epsilon}(x_0, y_0)$ and f_x is continuous at (x_0, y_0) .
 - (a) Define $f_1(x,y) = \frac{f(x,y) f(x_0,y)}{x x_0}$ if $x \neq x_0$ and $f_1(x_0,y) = f_x(x_0,y)$. Define $f_2(x_0,y) = \frac{f(x_0,y) f(x_0,y_0)}{y y_0}$ if $y \neq y_0$ and $f_2(x_0,y_0) = f_y(x_0,y_0)$. Show that $f_1 : N_{\epsilon}(x_0,y_0) \to \mathbb{R}$ and $f_2(x_0,y_0) : (y_0 \epsilon, y_0 + \epsilon) \to \mathbb{R}$ are continuous at (x_0,y_0) and y_0 respectively.

- (b) Show that $f(x,y) f(x_0,y_0) = (x-x_0)f_1(x,y) + (y-y_0)f_2(x,y)$ for all $x,y \in N_{\epsilon}(x_0,y_0)$.
- (c) Show that f is differentiable at (x_0, y_0) .

Practice Problems 27: Hints/Solutions

- 1. (a) Since $f_x(0,0)$ does not exist, f it is not differentiable at (0,0).
 - (b) The limit $\lim_{t\to 0} \frac{f(t,0)-f(0,0)}{t} = \lim_{t\to 0} \frac{|t|}{t}$ does not exist. Hence $f_x(0,0)$ does not exist and therefore f is not differentiable at (0,0).
 - (c) The function is not continuous at (0,0) and hence it is not differentiable at (0,0).
 - (d) Observe that $f_x(0,0) = f_y(0,0) = 0$ and $\epsilon(h,k) = \frac{f(h,k) f(0,0) f_x(0,0) \cdot h f_y(0,0) \cdot k}{\sqrt{h^2 + k^2}} = \frac{\sqrt{|hk|}}{\sqrt{h^2 + k^2}} \rightarrow 0$ as $(h,k) \rightarrow (0,0)$ along the line h=k. Hence f is not differentiable at (0,0).
 - (e) Since $f_x(0,0) = 0$ and $f_y(0,0) = 0$, $|\epsilon(h,k)| = \left| \frac{h^2 k}{\sqrt{h^2 + k^2}} \right| \le |k| \to 0$ as $(h,k) \to (0,0)$. Therefore f is differentiable at (0,0).
 - (f) Note that $f_x(0,0) = f_y(0,0) = 0$ and $\epsilon(h,k) \to \frac{1}{\sqrt{2}}$ along h = k. Therefore f is not differentiable at (0,0).
 - (g) The partial derivatives of f are continuous. Hence f is differentiable.
- 2. (a) Observe that $f_x(0,0) = f_y(0,0) = 0$. Now $\epsilon(h,k) = \frac{f(h,k) f(0,0) f_x(0,0) \cdot h f_y(0,0) \cdot k}{\sqrt{h^2 + k^2}} = \frac{|hk|}{\sqrt{h^2 + k^2}} \le \frac{\sqrt{h^2 + k^2}|k|}{\sqrt{h^2 + k^2}} \to 0$ as $(h,k) \to (0,0)$. Therefore f is differentiable at (0,0).
 - (b) For $y_0 \neq 0$, $\lim_{t\to 0} \frac{f(t,y_0) f(0,y_0)}{t} = \lim_{t\to 0} \frac{|t||y_0|}{t}$ does not exist.
- 3. (a) For $x \neq y$, $f_x(x,y) = 2(x-y)\sin\frac{1}{x-y} \cos\frac{1}{x-y}$ and $f_x(x,x) = 0$. Similarly, for $x \neq y$, $f_y(x,y) = -2(x-y)\sin\frac{1}{x-y} + \cos\frac{1}{x-y}$ and $f_y(x,x) = 0$.
 - (b) Now $|\epsilon(h,k)| \le \left| \frac{(h-k)^2}{\sqrt{h^2+k^2}} \sin \frac{1}{h-k} \right| \le \frac{3(h^2+k^2)}{\sqrt{h^2+k^2}} \to 0$ as $(h,k) \to (0,0)$.
 - (c) It is clear that f_x and f_y are not continuous at (0,0).
- 4. (a) Use the chain rule, for example, $\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial z}{\partial u} \frac{\partial y}{\partial r}$.
 - (b) Use (a).
- 5. (a) Let $x(t) = x_0 + th$ and $y(t) = y_0 + tk$ and apply the chain rule $\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$.
 - (b) Take $(x_0, y_0) = (1, 2)$ and (h, k) = (2, 2). Apply (a) and Rolle's Theorem for ϕ .
- 6. If x(t), y(t) and z(t) are height, length and width of the block at time t, then the volume is V(t) = x(t)y(t)z(t). By the chain rule $\frac{dV}{dt} = \frac{\partial V}{\partial x}\frac{dx}{dt} + \frac{\partial V}{\partial y}\frac{dy}{dt} + \frac{\partial V}{\partial z}\frac{dz}{dt}$. Note that $\frac{dx}{dt} = \frac{dy}{dt} = \frac{dz}{dt} = -5, x(t_0) = 5, y(t_0) = 10$ and $z(t_0) = 12$ at the given time t_0 . Therefore at t_0 , the rate of change of the volume of the block is $\frac{dV}{dt}|t_0 = -460$ ft per hour.
- 7. (a) Note that $\lim_{y\to y_0} f_2(x_0, y) = f_y(x_0, y_0) = f_2(x_0, y_0)$. Therefore $f_2(x_0, \cdot)$ is continuous at y_0 .
 - For any $(x,y) \in N_{\epsilon}(x_0,y_0)$, $x \neq x_0$, by the MVT (of one variable) there exists c between x and x_0 such that $f(x,y) f(x_0,y) = (x-x_0)f_x(c,y)$, that is $f_1(x,y) = f_x(c,y)$. Since f_x is continuous at (x_0,y_0) , f_1 is continuous at (x_0,y_0) .

- (b) This is obvious.
- (c) For $(h,k) \in \mathbb{R}^2$, consider $|\epsilon(h,k)| = \left| \frac{f(x_0+h,y_0+k)-f(x_0,y_0)-f_x(x_0,y_0)\cdot h-f_y(x_0,y_0)\cdot k}{\sqrt{h^2+k^2}} \right|$ By (b), we get that $|\epsilon(h,k)| \le \left| \frac{|h||f_1(x_0+h,y_0+k)-f_x(x_0,y_0)|+|k||f_2(x_0+h,y_0+k)-f_y(x_0,y_0)|}{\sqrt{h^2+k^2}} \right|$ $\le |f_1(x_0+h,y_0+k)-f_x(x_0,y_0)|+|f_2(x_0+h,y_0+k)-f_y(x_0,y_0)| \to 0 \text{ as } (h,k) \to (0,0).$ Therefore f is differentiable at (x_0,y_0) .