PP 29 : Mixed Partial Derivatives, Mean Value Theorem and Extended Mean Value theorem

The following two definitions are used in this problem sheet.

Definition 1: Let f : R?2 — R. We say that f is convex if f[(1-M\)X+AY] < (1-X)f(X)+Af(Y)
for every X,Y € R? and every 0 < X < 1. (Geometrically, if we take two points (X, f(X)) and
(Y, f(Y)) on the graph of f, then the graph of f lies below the line segment joining the two
points chosen).

Definition 2: A 2 x 2 matrix M = ( i Z ) is said to be non-negative definite if the matrix

h

multiplication ( h k )A( X

> = ah? + (b+ c)hk + dk? > 0 for all h, k € R.

1. Let f(x,y) = “U52% if (2,3) # (0,0) and £(0,0) = 0. Show that, at (0,0),

(a) f is continuous.

(b) fz and f, are continuous.

(c) f is differentiable.

(d) fay # fya-

2. Let f:R? — R be differentiable and M € R be such that |f,(X)| < M and |f,(X)] < M
for all X € R2. Show that |f(X) — f(Y)| < 2M| X — Y| for all X,Y € R?.

3. (Tangent plane approzimation): Let f : R? — R and (z0,10) € R%. Suppose that f, and
fy are continuous and they have continuous partial derivatives on R2. Let z = L(z,y) be
the equation of the tangent plane for the surface z = f(x,y) at (xo,yo, f(x0,¥0)). Show
that

(a‘) f(:E?y) = L(‘T’y) + R where R — 0 as (SU,:I/) — (x()uy())'
(b) e¥cosx =1+ 1y + R where R — 0 as (z,y) — (0,0).

4. Let f:R? — R be a differentiable function. Show that f is convex if and only if f(X) >
f(X0) + f'(Xo) - (X — Xp) for all X, Xg € R? (geometrically, the graph of f lies above the
tangent plane at every point on the graph).

5. Let f:R? — R. Suppose that f, and f, are continuous and they have continuous partial

o . . : X)) fay(X)
derivatives. Then f is convex if, for all X € R2, the matrix My = ( Jaa( i
/ X X)) (X)

is non-negative definite (See the definition given above).
6. Let f:R? = R and X € R2. Denote Q(X) = (h?fux + 20k fuy + k2f,,)(X). Show that
(8) far(X)QX) = (e + kfoy)2(X) + K2(fu fyy — F2,)(X).
(b) fuy(X)QX) = (Afyy + kfay)(X) + K> (faafyy — F2,)(X).

7. Let f:R? — R. Suppose that f, and fy are continuous and they have continuous partial
derivatives. Show that f is convex if for all (z,y) € R? the following properties hold

(a) (fxxfyy - fl‘y)Z(:an) >0,
(b) fm(ﬂC,y) Z O or fyy($7y) 2 0



8. Show that the function f(z,y) = 2 + y? is convex.

9. (*) Suppose that f : R? — R has continuous second order partial derivatives. For
(wov y0)7 (hv k) S R2, define

H(h,k) = [f(zo + h,yo + k) — f(z0 + h,y0)] — [f (w0, 90 + k) — f(x0,v0)]-
Show that
(a) there exists T between xg and zg + h such that H(h, k) = [f+(Z,y0 + k) — f(T, yo)] h-
(b) there exists § between yo and yo + k such that H(h, k) = f.,(T,y)hk.
(€) foy(o,y0) = limp, k) (0,0) 75 H (h, k).
(d) fay(zo,¥0) = fyz(0, Y0)-

Practice Problems 29: Hints/Solutions

1. (a) Note that f(z,y) = % — 0= f(0,0) as (z,y) — (0,0).
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a2ty
(b) 1f (z,9) # (0,0), then fo(r,y) = “5EHD and f,(x,y) = LT AG(0,0),
xr 2 .
£2(0,0) = £,(0,0) = 0. Now |f.(z,y)| < % = |y| — 0 as (z,y) — (0,0). This

shows that f,(z,y) — f2(0,0) as (x,y) — (0,0). Therefore f, is continuous at (0,0).
Similarly we show that f, is continuous at (0, 0).

(c) The differentiabilty of f at (0,0) follows from (b).

d) By definition, f,(0,0) = limg_.o L0 -F(00) _ limy_,q ;133 = —1. Similarly, verify
Y k k
that fy.(0,0) = 1.

2. Follows from the mean value theorem.

3. The equation of the tangent plane is z = L(z,y) where, for any (z,y) € R?, L(x,y) =
f(xo,y0) + (%0, %0) - (x — 0,y — Yo)-

(a) By the EMVT there exists some C lying on the line segment joining (x, y) and (¢, yo)
such that f(z,y) = L(z,y) + R(z,y) where R(z,y) = 3[(z — 20)* fox + 2(z — 20)(y —
Y0) oy + (¥ — ¥0)%fyy](C). By the continuity of the second order partial derivatives
of f, R(xz,y) — 0 as (x,y) — (x0,¥0)-

(b) Let (z0,90) = (0,0) and apply (a).

4. Suppose that f is convex. Let X, Xy € R? and A € [0,1]. Then f(Xo + A(X — Xp)) <

F(Xo)+A(f(X)—f(Xo)). This implies that 5 [f(Xo+AMX —Xo))—f(Xo)] < f(X)— f(Xo)-
Therefore x[f(Xo +A(X — Xo)) — f(Xo)] = f'(Xo) - (X — Xo) < f(X) — f(Xo) — ['(Xo) -
(X — Xo). Allow A — 0.
Conversely, suppose that f(X) > f(Xo) + f'(Xo) - (X — Xo) for all X, X, € R% Let
X1,X2 € R? and Xg = (1 — A\)X; + AX> for some A € [0,1]. Then, by the assumption,
f(X1) = f(Xo) = f/(Xo) - (X1 — Xo) and f(X2) — f(Xo) > f'(Xo) - (X2 — Xp). From these
two inequalities we get that (1 —\)f(X1)+Af(X2)— f(Xo) > 0. This proves the convexity
of f.

5. This follows from the EMVT and Problem 4.

6. Trivial.



7. Follows from Problem 5 and Problem 6.
8. By applying either Problem 5 or Problem 7 we see that f is convex.

9. (a) Define g(z) = f(x,yo + k) — f(x,y0). Then H(h,k) = g(xo + h) — g(xo). By the
MVT (for one variable), there exists T € R, between xy and z¢ + h, such that
g(xo + h) — g(zo) = ¢'(T)h. Note that ¢'(T) = f(T,y0 + k) — f2(T,y0). This proves
(a).

(b) Again apply the MVT for one variable to obtain (b).
(c) By the continuity of fu,, we have fuy(z0,y0) = lim, k)—(0,0) fay(zo + h, Yo + k)
= lHmp, k) (0,0) foy (T, 7). Apply (b).
(d) By exchanging the rolls of x and y, we show that f,. (%o, y0) = lim, x)—(0,0) = H(h, k).



