PP 32 : Double integral

- 1. Let $R = [a, b] \times [c, d]$ and $f : R \to \mathbb{R}$ be defined by f(x, y) = p(x)q(y) where $p : [a, b] \to \mathbb{R}$ and $q : [c, d] \to \mathbb{R}$ are continuous. Show that $\iint_R f(x, y) dx dy = \left(\int_a^b p(x) dx\right) \left(\int_c^d q(y) dy\right)$.
- 2. Let $R = [0, \frac{\pi}{2}] \times [0, \frac{\pi}{2}]$. Evaluate $\iint_R \sin x \cos y dx dy$.
- 3. Evaluate $\iint_R \cos x^3 dx dy$ where R is the region in \mathbb{R}^2 bounded by $y = 3x^2, y = 0$ and x = 1.
- 4. Let R be the region lying below the curve $y = \cos x$, $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ and above the x-axis. Evaluate $\iint_R \sin x dx dy$.
- 5. Let R be the region in \mathbb{R}^2 bounded by the curves $y=2x^2$ and $y=1+x^2$. Evaluate $\iint_{\mathbb{R}} (2x^2+y) dx dy$.
- 6. Evaluate $\iint_R x \cos(y \frac{y^3}{3}) dx dy$ where $R = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, x \ge 0, y \ge 0\}.$
- 7. Evaluate the following iterated integrals by interchanging the order of integration.
 - (a) $\int_{0}^{1} \int_{y}^{1} \cos x^{2} dx dy.$
 - (b) $\int_{0}^{1} \int_{\sqrt{x}}^{1} e^{y^3} dy dx$.
 - (c) $\int_{0}^{1} \int_{x^2}^{1} x^3 e^{y^3} dy dx$.
 - (d) $\int_{0}^{1} \int_{y}^{1} \frac{1}{1+x^4} dx dy$.
- 8. Evaluate $\int_{0}^{1} (\tan^{-1} \pi x \tan^{-1} x) dx$.
- 9. Find the volume of the solid enclosed by the surfaces $z=6-x^2-y^2, z=2x^2+y^2-1, x=-1, x=1, y=-1$ and y=1.
- 10. Let D be the solid bounded by the surfaces $y = x^2, y = 3x, z = 0$ and $z = x^2 + y^2$. Find the volume of D.
- 11. Led D be the solid bounded by the cylinder $x^2 + y^2 = 1$ and the planes y + z = 1 and z = 0. Find the volume of D.
- 12. Find the volume of the solid which is common to the cylinders $x^2 + y^2 = 1$ and $x^2 + z^2 = 1$. See Problem 10 of PP 20.

Practice Problems 32: Hints/Solutions

1. Follows from the Fubini's theorem.

- 2. By Fubuni's theorem $\iint\limits_R \sin x \cos y dx dy = (\int\limits_0^{\frac{\pi}{2}} \sin x dx) (\int\limits_0^{\frac{\pi}{2}} \cos y dy) = 1.$
- 3. See Figure 1. By Fubuni's theorem $\iint\limits_R \cos x^3 dx dy = \int\limits_0^1 \int\limits_0^{3x^2} \cos x^3 dy dx = \int\limits_0^1 3x^2 \cos x^3 dy dx = \int\limits_0^1 3x^2 \cos x^3 dx dx = \sin 1.$
- 4. See Figure 2. $\iint_R \sin x dx dy = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{\cos x} \sin x dy dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin x \cos x dx = \frac{\sin^2 x}{2} \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 0.$
- 5. See Figure 3. $\iint_R (2x^2 + y) dx dy = \int_{-1}^1 \int_{2x^2}^{1+x^2} (2x^2 + y) dy dx$.
- 6. See Figure 4. $\iint_R x \cos(y \frac{y^3}{3}) dx dy = \int_0^1 \int_0^{\sqrt{1 y^2}} x \cos(y \frac{y^3}{3}) dx dy = \int_0^1 \frac{1}{2} x^2 \cos(y \frac{y^3}{3}) |_0^{\sqrt{1 y^2}} = \frac{1}{2} \int_0^1 (1 y^2) \cos(y \frac{y^3}{3}) dy = \frac{1}{2} \int_0^{\frac{2}{3}} \cos t dt.$
- 7. (a) $\int_{0}^{1} \int_{y}^{1} \cos x^{2} dx dy = \int_{0}^{1} \int_{0}^{x} \cos x^{2} dy dx = \int_{0}^{1} x \cos x^{2} dx = \frac{1}{2} \sin 1$. See Figure 5.
 - (b) $\int_{0}^{1} \int_{\sqrt{x}}^{1} e^{y^3} dy dx = \int_{0}^{1} \int_{0}^{y^2} e^{y^3} dx dy = \frac{1}{3} \int_{0}^{1} e^u du = \frac{1}{3} (e 1)$. See Figure 6.
 - (c) $\int_{0}^{1} \int_{x^{2}}^{1} x^{3} e^{y^{3}} dy dx = \int_{0}^{1} \int_{0}^{\sqrt{y}} x^{3} e^{y^{3}} dx dy = \int_{0}^{1} \frac{1}{4} y^{2} e^{y^{3}} dy = \frac{1}{12} (e 1). \text{ See Figure 7.}$
 - (d) $\int_{0}^{1} \int_{u}^{1} \frac{1}{1+x^4} dx dy = \int_{0}^{1} \int_{0}^{x} \frac{1}{1+x^4} dy dx = \frac{1}{2} \int_{0}^{1} \frac{du}{1+u^2} = \frac{1}{2} \tan^{-1} u \Big|_{0}^{1} = \frac{\pi}{8}.$ See Figure 8.
- 8. Note that $\int_{0}^{1} (\tan^{-1} \pi x \tan^{-1} x) dx = \int_{0}^{1} \int_{x}^{\pi x} \frac{1}{1+y^{2}} dy dx = \int_{0}^{1} \int_{\frac{y}{\pi}}^{y} \frac{1}{1+y^{2}} dx dy + \int_{1}^{\pi} \int_{\frac{y}{\pi}}^{1} \frac{1}{1+y^{2}} dx dy.$ See Figure 9.
- 9. Note that $(6 x^2 y^2) (2x^2 + y^2 1) \ge 0$ for all $(x, y) \in [-1, 1] \times [-1, 1]$. The volume of $D = \int_{-1}^{1} \int_{-1}^{1} (6 x^2 y^2) (2x^2 + y^2 1) dy dx$.
- 10. Let R be the region in \mathbb{R}^2 bounded by the curves $y=x^2$ and y=3x. Then the volume of $D=\iint\limits_R (x^2+y^2)dxdy=\int\limits_0^3\int\limits_{x^2}^{3x}(x^2+y^2)dydx.$
- 11. Let $R = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$. Then the solid D lies above the region R and below the graph z = 1 y. The volume of $D = \iint_R (1 y) dx dy = \iint_R dx dy \iint_R y dx dy$. Note that $\iint_R y dx dy = \int_{-1}^1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} y dy dx = \int_{-1}^1 0 dx = 0$. Therefore the required volume is the area of R which is π
- 12. The solid is enclosed by the cylinder $x^2+y^2=1$ and the surfaces $z=-\sqrt{1-x^2}$ and $z=\sqrt{1-x^2}$. Let $R=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 1\}$. The required volume is equal to $\iint\limits_R(\sqrt{1-x^2}-(-\sqrt{1-x^2}))=\int\limits_{-1}^1\int\limits_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}2\sqrt{1-x^2}=\frac{16}{3}.$