PP 34: Triple integral, Change of variables, Cylindrical and Spherical coordinates

- 1. Let D denote the solid bounded by the surfaces $y=x,\,y=x^2,\,z=x$ and z=0. Evaluate $\iiint\limits_D y dx dy dz$.
- 2. Let D denote the solid bounded below by the plane z + y = 2, above by the cylinder $z + y^2 = 4$ and on the sides x = 0 and x = 2. Evaluate $\iiint_D x dx dy dz$.
- 3. Suppose $\int_{0}^{4} \int_{\sqrt{x}}^{2} \int_{0}^{2-y} dz dy dx = \iiint_{D} dx dy dz$ for some region $D \subset \mathbb{R}^{3}$.
 - (a) Sketch the region D.
 - (b) Sketch the projections of D on the xy, yz and xz planes.
 - (c) Write $\int_{0}^{4} \int_{\sqrt{x}}^{2} \int_{0}^{2-y} dz dy dx$ as iterated integrals of other orders.
- 4. Let $D = \{(x, y, z) \in \mathbb{R}^3 : \frac{x^2}{4} + \frac{y^2}{16} + \frac{z^2}{9} \le 1\}$ and $E = \{(u, v, w) \in \mathbb{R}^3 : u^2 + v^2 + w^2 \le 1\}$. Show that $\iiint_D dx dy dz = \iiint_E 24 du dv dw$.
- 5. In each of the following cases, describe the solid D in terms of the cylindrical coordinates.
 - (a) Let D be the solid that is bounded by the paraboloids $z = x^2 + y^2$ and $z = 36 3x^2 3y^2$.
 - (b) Let D be the solid that lies within the cylinder $x^2 + (y-1)^2 = 1$ below the paraboloid $z = x^2 + y^2$ and above the plane z = 0.
 - (c) Let S denote the torus generated by revolving the circle $\{(x,z):(x-2)^2+z^2=1\}$ about the z-axis. Let D be the solid that is bounded above by the surface S and below by z=0.
- 6. Let D be the solid that lies inside the cylinder $x^2 + y^2 = 1$, below the cone $z = \sqrt{4(x^2 + y^2)}$ and above the plane z = 0. Evaluate $\iiint_D x^2 dx dy dz$.
- 7. Evaluate $\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{x^2+y^2}^{4} x dz dy dx.$
- 8. Describe the following regions in terms of the spherical coordinates.
 - (a) The region that lies inside the sphere $x^2 + y^2 + (z-2)^2 = 4$ and outside the sphere $x^2 + y^2 + z^2 = 1$.
 - (b) The region that lies below the sphere $x^2 + y^2 + z^2 = z$ and above the cone $z = \sqrt{x^2 + y^2}$.
 - (c) The region that is enclosed by the cone $z = \sqrt{3(x^2 + y^2)}$ and the planes z = 1 and z = 2.
- 9. Let D denote the solid bounded above by the plane z=4 and below by the cone $z=\sqrt{x^2+y^2}$. Evaluate $\iiint\limits_D \sqrt{x^2+y^2+z^2} dx dy dz$.
- 10. Let D denote the solid enclosed by the spheres $x^2 + y^2 + (z 1)^2 = 1$ and $x^2 + y^2 + z^2 = 3$. Using spherical coordinates, set up iterated integrals that gives the volume of D.

Practice Problems 34: Hints/Solutions

- 1. The projection of the solid D on the xy-plane is given by $R = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1, x^2 \le y \le x\}$. The solid D lies above the surface $z = f_1(x,y) = 0$ and below $z = f_2(x,y) = x$. Therefore $\iiint\limits_D y dx dy dz = \iiint\limits_R \{\int\limits_0^x y dz\} dx dy = \int\limits_0^1 \int\limits_{x^2}^x \int\limits_0^x y dz dy dx$.
- 2. See Figure 1. Solving $4-y^2=2-y$ implies y=-1,2. The projection of the solid D on the xy-plane is given by $R=[0,2]\times[-1,2]$. The solid lies above $z=f_1(x,y)=2-y$ and below $z=f_2(x,y)=4-y^2$. Therefore $\iint\limits_D x dx dy dz = \iint\limits_R \{\int\limits_{2-y}^{4-y^2} x dz\} dx dy = \int\limits_0^2 \int\limits_{-1}^2 \int\limits_{2-y}^{4-y^2} x dz dy dx.$
- 3. (a) See Figure 2.
 - (b) See Figure 3, Figure 4 and Figure 5.

(c)
$$\int_{0}^{4} \int_{\sqrt{x}}^{2} \int_{0}^{2-y} dz dy dx = \int_{0}^{2} \int_{0}^{y^{2}} \int_{0}^{2-y} dz dx dy = \int_{0}^{2} \int_{0}^{2-z} \int_{0}^{y^{2}} \int_{0}^{2-z} dx dy dz = \int_{0}^{2} \int_{0}^{2-y} \int_{0}^{y^{2}} dx dz dy$$
$$= \int_{0}^{4} \int_{0}^{2-\sqrt{x}} \int_{0}^{2-z} \int_{0}^{z} \int_{0}^{2-z} \int_{0}^{2-z} \int_{0}^{2-z} \int_{0}^{2-z} dy dx dz.$$

- 4. Consider the change of variables x = 2u, y = 4v and z = 3w. Note that the transformation T(u, v, w) = (2u, 4v, 3w) = (x, y, z) maps E onto D and the Jacobian J(u, v, w) = 24.
- 5. (a) Solving $x^2+y^2=36-3(x^2+y^2)$ implies that $x^2+y^2=9$. The projection of the solid D on the xy-plane is the circular disk $\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 9\}$. The solid is bounded by $z=r^2$ and $z=36-3r^2$. Therefore $D=\{(r,\theta,z):0\leq\theta\leq 2\pi,0\leq r\leq 3,r^2\leq z\leq 36-3r^2\}$.
 - (b) The projection of D on the xy-plane is given by $\{(x,y) \in \mathbb{R}^2 : x^2 + (y-1)^2 \le 1\}$ which is described in cylindrical coordinates as $\{(r,\theta): 0 \le \theta \le \pi, 0 \le r \le 2\sin\theta\}$. Therefore $D = \{(r,\theta,z): 0 \le \theta \le \pi, 0 \le r \le 2\sin\theta, 0 \le z \le r^2\}$.
 - (c) The projection of the solid D on the xy-plane is the region between the circles r=1 and r=3. Allow θ to run from 0 to 2π and consider the cross section of the solid, perpendicular to the xy-plane, corresponding to a fixed θ . The cross section is a circle which is shown in Figure 6. The equation of the circle can be considered as $(r-2)^2+z^2=1$ for $1\leq r\leq 3$. Therefore $D=\{(r,\theta,z): 0\leq \theta\leq 2\pi, 1\leq r\leq 3, 0\leq z\leq \sqrt{1-(r-2)^2}\}$.
- 6. The projection of the solid D on the xy-plane is the circular disk $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$. We will use the cylindrical coordinates. The solid D is bounded by z = 0 and z = 2r. Therefore $\iiint_D x^2 dx dy dz = \int\limits_0^{2\pi} \int\limits_0^{1} \int\limits_0^{2r} r^2 \cos^2 \theta r dz dr d\theta$.
- 7. Note that $\int_{-2-\sqrt{4-x^2}}^2 \int_{-\sqrt{4-x^2}}^4 x dz dy dx = \iiint_D x dx dy dz$ where D is the solid bounded below by $z = x^2 + y^2$ and above by z = 4. The projection of the solid on the xy-plane is given by $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$. By the cylindrical coordinates $\iiint_D x dx dy dz = \int_0^{2\pi} \int_{0}^{2} \int_{0}^{4} r \cos \theta r dz dr d\theta$.

- 8. (a) See Figure 7. The sphere $x^2 + y^2 + z^2 = 1$ is expressed as $\rho = 1$ where as $x^2 + y^2 + (z-2)^2 = 4$ is expressed as $\rho = 4\cos\phi$. The two spheres intersect at $\cos\phi = \frac{1}{4}$. For a fixed $\phi \in [0,\cos^{-1}\frac{1}{4}]$, ρ varies from 1 to $4\cos\phi$ in the given region. Therefore the region is given by $\{(\rho,\theta,\phi): 0 \le \theta \le 2\pi, 0 \le \phi \le \cos^{-1}\frac{1}{4}, 1 \le \rho \le 4\cos\phi\}$.
 - (b) See Figure 8. The sphere is expressed as $\rho = \cos \phi$. The cone is expressed as $\rho \cos \phi = \rho \sin \phi$ that is $\phi = \frac{\pi}{4}$. For a fixed $\phi \in [0, \frac{\pi}{4}]$, ρ varies from 0 to $\cos \phi$ in the given region. Therefore the region is given by $\{(\rho, \theta, \phi) : 0 \le \theta \le 2\pi, \ 0 \le \phi \le \frac{\pi}{4}, \ 0 \le \rho \le \cos \phi\}$.
 - (c) See Figure 9. The cone is written as $\rho\cos\phi = \sqrt{3}\rho\sin\phi$; that is $\phi = \frac{\pi}{6}$. For a fixed $\phi \in [0, \frac{\pi}{6}], \ \rho$ varies from $\sec\phi$ to $2\sec\phi$ in the given region. Therefore the region is given by $\{(\rho, \theta, \phi) : 0 \le \theta \le 2\pi, \ 0 \le \phi \le \frac{\pi}{6}, \sec\phi \le 2\sec\phi\}$.
- 9. See Figure 10. Let us use the spherical coordinates. The equation $z=\sqrt{x^2+y^2}$ is written as $\rho\cos\phi=\rho\sin\phi$. This implies that $\tan\phi=1$, i.e., $\phi=\frac{\pi}{4}$. The equation z=4 is written as $4=\rho\cos\phi$ that is $\rho=\frac{4}{\cos\phi}$. Therefore $\iiint\limits_{D}\sqrt{x^2+y^2+z^2}dxdydz=\frac{2\pi}{4}\frac{\pi}{4}\frac{4\sec\phi}{\int\limits_{D}\int\limits_{D}\int\limits_{D}\int\limits_{D}\rho\rho^2\sin\phi d\rho d\phi d\theta=2\pi 4^3\int\limits_{D}\frac{\sin\phi}{\cos^4\phi}d\phi.$
- 10. See Figure 11. Solving $x^2+y^2+(z-1)^2=1$ and $x^2+y^2+z^2=3$ implies that $z=\frac{3}{2}$, i.e., $\rho\cos\phi=\frac{3}{2}$. The equation $x^2+y^2+(z-1)^2=1$ becomes $\rho=2\cos\phi$ in the spherical coordinates. The required volumes is the sum of the volume of the portion of the region $x^2+y^2+z^2\leq 3$ that lies inside the cone $\phi=\frac{\pi}{6}$ and the volume of the portion of the region $x^2+y^2+(z-1)^2\leq 1$ that lies inside the sphere $x^2+y^2+z^2=3$. Therefore the required volume is given by $\int\limits_0^{2\pi}\int\limits_0^{\pi}\int\limits_0^{\sqrt{3}}\rho^2\sin\phi d\rho d\phi d\theta +\int\limits_0^{2\pi}\int\limits_{\pi}^{\pi}\int\limits_0^{2}\int\limits_0^{2}\rho^2\sin\phi d\rho d\phi d\theta.$