PP 35: Parametric surfaces, surface area and surface integrals

- 1. Consider the surface (paraboloid) $z = x^2 + y^2 + 1$.
 - (a) Parametrize the surface by considering it as a graph.
 - (b) Show that $r(r,\theta) = (r\cos\theta, r\sin\theta, r^2 + 1), r \ge 0, 0 \le \theta \le 2\pi$ is a parametrization of the surface.
 - (c) Parametrize the surface in the variables z and θ using the cylindrical coordinates.
- 2. For each of the following surfaces, describe the intersection of the surface and the plane z=k for some k>0; and the intersection of the surface and the plane y=0. Further write the surfaces in parametrized form $r(z,\theta)$ using the cylindrical co-ordinates.
 - (a) $4z = x^2 + 2y^2$ (paraboloid)

- (b) $z = \sqrt{x^2 + y^2}$ (cone) (d) $-\frac{x^2}{9} \frac{y^2}{16} + z^2 = 1, z \ge 0.$
- (c) $x^2 + y^2 + z^2 = 9, z \ge 0$ (Upper hemi-sphere)
- 3. Let S denote the surface obtained by revolving the curve $z = 3 + \cos y, 0 \le y \le 2\pi$ about the y-axis. Find a parametrization of S.
- 4. Parametrize the part of the sphere $x^2 + y^2 + z^2 = 16, -2 \le z \le 2$ using the spherical co-ordinates.
- 5. Consider the circle $(y-5)^2+z^2=9, x=0$. Let S be the surface (torus) obtained by revolving this circle about the z-axis. Find a parametric representation of S with the parameters θ and ϕ where θ and ϕ are described as follows. If (x, y, z) is any point on the surface then θ is the angle between the x-axis and the line joining (0,0,0) and (x,y,0) and ϕ is the angle between the line joining (x, y, z) and the center of the moving circle (which contains (x, y, z) with the xy-plane.
- 6. Let S be the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies above the cone $z = \sqrt{x^2 + y^2}$. Parametrize S by considering it as a graph and again by using the spherical coordinates.
- 7. Let S denote the part of the plane 2x + 5y + z = 10 that lies inside the cylinder $x^2 + y^2 = 9$. Find the area of S.
 - (a) By considering S as a part of the graph z = f(x, y) where f(x, y) = 10 2x 5y.
 - (b) By considering S as a parametric surface $r(u, v) = (u \cos v, u \sin v, 10 u(2 \cos v + v))$ $5\sin v$), $0 \le u \le 3$ and $0 \le v \le 2\pi$.
- 8. Find the area of the surface x = uv, y = u + v, z = u v where $(u, v) \in D = \{(s, t) \in \mathbb{R}^2 : s \in \mathbb{R}^2 : s$ $s^2 + t^2 \le 1$.
- 9. Find the area of the part of the surface $z = x^2 + y^2$ that lies between the cylinders $x^2 + y^2 = 4$ and $x^2 + y^2 = 16$.
- 10. Let S be the hemisphere $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 4, z \ge 0\}$.
 - (a) Evaluate $\iint_S z^2 d\sigma$ by considering S as a graph: z = f(x, y).
 - (b) Evaluate $\iint_S z d\sigma$ by considering S as a parametric surface (but not as a graph).
- 11. Let S be the part of the cylinder $y^2 + z^2 = 1$ that lies between the planes x = 0 and x = 3in the first octant. Evaluate $\iint_S (z+2xy)d\sigma$.

Practice Problems 35: Hints/Solutions

- 1. (a) $r(x,y) = (x,y,1+x^2+y^2), x,y \in \mathbb{R}$
 - (b) Easy to verify.
 - (c) $r(z, \theta) = (\sqrt{z 1}\cos\theta, \sqrt{z 1}\sin\theta, z), z \ge 1, 0 \le \theta \le 2\pi.$
- 2. (a) For z > 0, $\frac{x^2}{4z} + \frac{y^2}{2z} = 1$. Hence $r(z, \theta) = (2\sqrt{z}\cos\theta, \sqrt{2z}\sin\theta, z), z \ge 0$ and $0 \le \theta \le 2\pi$.
 - (b) $r(z, \theta) = (z \cos \theta, z \sin \theta, z), z \ge 0$ and $0 \le \theta \le 2\pi$.
 - (c) $r(z,\theta) = (\sqrt{9-z^2}\cos\theta, \sqrt{9-z^2}\sin\theta, z), 0 \le z \le 3 \text{ and } 0 \le \theta \le 2\pi.$
 - (d) $r(z,\theta) = (3\sqrt{z^2 1}\cos\theta, 4\sqrt{z^2 1}\sin\theta, z), z \ge 1 \text{ and } 0 \le \theta \le 2\pi.$
- 3. The intersection of the surface and the plane y=t is a circle of radius $3+\cos t$. The projection of this circle on the xz-plane is parametrized as $((3+\cos t)\cos\theta, (3+\cos t)\sin\theta), 0 \le \theta \le 2\pi$. Since t is varying from 0 to 2π , S is given by $r(t,\theta) = ((3+\cos t)\cos\theta, t, (3+\cos t)\sin\theta), 0 \le t \le 2\pi, 0 \le \theta \le 2\pi$.
- 4. The entire sphere is represented by $r(\theta, \phi) = (4 \sin \phi \cos \theta, 4 \sin \phi \sin \theta, 4 \cos \phi), 0 \le \theta \le 2\pi$ and $0 \le \phi \le \pi$. To represent the given part, we apply $-2 \le z \le 2$. This implies $\frac{\pi}{3} \le \phi \le \frac{2\pi}{3}$. Therefore the required parametrization is $r(\theta, \phi) = (4 \sin \phi \cos \theta, 4 \sin \phi \sin \theta, 4 \cos \phi), 0 \le \theta \le 2\pi$ and $\frac{\pi}{3} \le \phi \le \frac{2\pi}{3}$.
- 5. If $(x, y, z) \in S$ then $z = 3\sin\phi$ and $(x, y, 0) = (r\cos\theta, r\sin\theta, 0)$ where $r = 5 + 3\cos\phi$. Therefore a parametric representation is $r(\theta, \phi) = ((5+3\cos\phi)\cos\theta, (5+3\cos\phi)\sin\theta, 3\sin\phi), 0 \le \theta \le 2\pi$ and $0 \le \phi \le 2\pi$.
- 6. The cone and the sphere intersect at the circle $x^2 + y^2 = 2$, $z = \sqrt{2}$. The surface S is given by $z = \sqrt{4 x^2 y^2}$, $x^2 + y^2 \le 2$ and in spherical coordinates $x = 2\sin\phi\cos\theta$, $y = 2\sin\phi\sin\theta$, $z = 2\cos\phi$, $0 \le \phi \le \frac{\pi}{4}$, $0 \le \theta \le 2\pi$.
- 7. (a) The projection D of the surface on the xy-plane is $\{(x,y): x^2+y^2 \leq 9\}$. The required area is $\iint_D \sqrt{1+f_x^2+f_y^2} dx dy = \iint_D \sqrt{1+4+25} dx dy = 9\sqrt{30}\pi$.
 - (b) The area is $\int_0^3 \int_0^{2\pi} \sqrt{EG F^2} dv du$ where $\sqrt{EG F^2} = |r_u \times r_v| = u\sqrt{30}$.
- 8. The surface is r(u,v)=(uv,u+v,u-v) and hence $\sqrt{EG-F^2}=\sqrt{4+2(u^2+v^2)}$. Therefore the required area is $\iint_D \sqrt{4+2(u^2+v^2)}dudv=\int_0^{2\pi}\int_0^1 \sqrt{4+2r^2}rdrd\theta$.
- 9. The entire surface $z=x^2+y^2$ is parametrized as $r(r,\theta)=(r\cos\theta,r\sin\theta,r^2), r\geq 0$ and $0\leq\theta\leq 2\pi$. Now $\sqrt{EG-F^2}=|r_\theta\times r_r|=r\sqrt{4r^2+1}$. Since the projection of the part of the surface on the xy-plane is the region between $x^2+y^2=4$ and $x^2+y^2=4, 2\leq r\leq 4$. Therefore the required area is $\int_0^{2\pi}\int_2^4r\sqrt{4r^2+1}drd\theta$.
- 10. (a) Since $2x + 2zz_x = 0$, $z_x = -\frac{x}{z}$. Similarly $z_y = -\frac{y}{z}$. Hence $\sqrt{1 + f_x^2 + f_y^2} = \sqrt{1 + z_x^2 + z_y^2} = \sqrt{1 + \frac{x^2}{z^2} + \frac{y^2}{z^2}} = \frac{2}{z}$. The projection of the S on the xy-plane is $D = \{(x,y): x^2 + y^2 \le 4\}$. Therefore $\iint_S z^2 d\sigma = \iint_D z^2 \frac{2}{z} dx dy = 2 \iint_D \sqrt{4 x^2 y^2} dx dy = 2 \iint_0^2 \sqrt{4 r^2} r dr d\theta$.
 - (b) The surface is given by $x = 2\cos\theta\sin\phi$, $y = 2\sin\theta\sin\phi$, $z = 2\cos\phi$ where $0 \le \theta \le 2\pi$ and $0 \le \phi \le \frac{\pi}{2}$. Sine $\sqrt{EG F^2} = 4\sin\phi$, $\iint_S d\sigma = \int_0^{2\pi} \int_0^{\frac{\pi}{2}} 2\cos\phi 4\sin\phi d\phi d\theta$.
- 11. The surface is $r(x,\theta) = (x,\cos\theta,\sin\theta), 0 \le x \le 3$ and $0 \le \theta \le \frac{\pi}{2}$. Therefore $\sqrt{EG-F^2} = |r_x \times r_\theta| = 1$. Hence $\iint_S (z+2xy) = \int_0^{\frac{\pi}{2}} \int_0^3 (\sin\theta + 2x\cos\theta)(1) dx d\theta = \int_0^{\frac{\pi}{2}} (3\sin\theta + 9\cos\theta d\theta)$.