PP 38 : Stokes' Theorem

- 1. Let F, S and \hat{n} be as in the statement of Stokes' theorem. Show that
 - (a) $\iint_S (curl F) \cdot \hat{n} \ d\sigma = \iint_T (curl F) \cdot (r_u \times r_v) \ dudv$ if S is the parametric surface defined by $r(u,v), (u,v) \in T$.
 - (b) $\iint_S (curl F) \cdot \hat{n} \ d\sigma = \iint_D (curl F) \cdot (-f_x \hat{i} f_y \hat{j} + \hat{k}) \ dxdy$ if S is the graph defined by $z = f(x,y), (x,y) \in D$.
- 2. Consider the surfaces S_1 and S_2 as given below. Let C be the curve of intersection of S_1 and S_2 . Suppose C is oriented counterclockwise when viewed from above. Parameterize C.
 - (a) S_1 is $x^2 + y^2 + z^2 = 4$ and S_2 is $x^2 + y^2 = 1$.
 - (b) S_1 is y + z = 2 and S_2 is $x^2 + y^2 = 1$.
 - (c) S_1 is $x^2 + y^2 + z^2 = 25$ and S_2 is z = 4.
- 3. Let C be the curve of intersection of the plane y + z = 2 and the cylinder $x^2 + y^2 = 1$. Suppose C is oriented counterclockwise when viewed from above.
 - (a) If F(x, y, z) = (z, x, y), find $\oint_C F \cdot dR$.
 - (b) If $F(x, y, z) = (z, x + e^{y^2}, y + e^{z^2})$, find $\oint_C F \cdot dR$.
 - (c) If $F(x, y, z) = -\alpha y^2 \hat{i} + \alpha x \hat{j} + (z + \cos z)^2 \hat{k}$ for some $\alpha \in \mathbb{R}$ and $\oint_C F \cdot dR = 2\pi$, find α .
 - (d) If $curl F = \alpha \hat{k}$ for some $\alpha \in \mathbb{R}$ and $\oint_C F \cdot dR = 2\pi$, find α .
- 4. Let F(x, y, z) = (z, x, y) and S be the surface as described below. Let C be the boundary of the surface which is oriented counterclockwise when viewed from above. Evaluate $\oint_C F \cdot dR$ using Stokes' theorem.
 - (a) S is the part of the plane z = x + 4 that lies inside the cylinder $x^2 + y^2 = 4$.
 - (b) S is the part of the surface $2x^2 + 2y^2 + z^2 = 9$ that lies above the surface $z = \frac{1}{2}\sqrt{x^2 + y^2}$.
 - (c) S is the part of the plane that lies inside the triangle with vertices (1,0,0),(0,1,0) and (0,0,1).
 - (d) $S = S_1 \cup S_2$ where S_1 is the part of the cylinder $x^2 + y^2 = 1, 0 \le z \le 4$ and S_2 is the disk $x^2 + y^2 \le 1, z = 4$.
- 5. Let S be the upper hemi-sphere $x^2 + y^2 + z^2 = 1$, $z \ge 0$.
 - (a) Find F such that $curl F = xe^y \hat{i} e^y \hat{j}$.
 - (b) Evaluate $\iint_S (x^2 e^y y e^y) d\sigma$.
- 6. Let C be the parameteric curve $R(t) = (\cos t, \sin t, \cos t + 4), 0 \le t \le 2\pi$ and

$$F(x, y, z) = (z^2 + e^z, 4x, e^z \cos^2 z).$$

Evaluate $\oint_C F \cdot dR$.

7. Let $F(x,y,z)=(y,-x,2z^2+x^2)$ and S be the part of the sphere $x^2+y^2+z^2=25$ that lies below the plane z=4. Evaluate $\iint_S curl F \cdot \hat{n} d\sigma$ where \hat{n} is the unit outward normal of S.

Practice Problems 38: Hints/Solutions

- 1. (a) Note that $\hat{n} = \frac{r_u \times r_v}{\|r_u \times r_v\|}$.
 - (b) Note that $\hat{n} = \frac{-f_x \hat{i} f_y \hat{j} + \hat{k}}{\sqrt{f_x^2 + f_y^2 + 1}}$.
- 2. (a) $R(\theta) = (\cos \theta, \sin \theta, \sqrt{3}), \quad 0 \le \theta \le 2\pi.$
 - (b) $R(\theta) = (\cos \theta, \sin \theta, 2 \sin \theta), \quad 0 \le \theta \le 2\pi.$
 - (c) $R(\theta) = (3\cos\theta, 3\sin\theta, 4), \quad 0 \le \theta \le 2\pi.$
- 3. (a) Note that $curl F = (1, 1, 1), \ z = 2 y = f(x, y) \text{ and } (-f_x, -f_y, 1) = (0, 1, 1).$ By Stokes' theorem and Problem 1(b), $\oint_C F \cdot dR = \iint_D (1, 1, 1) \cdot (0, 1, 1) dx dy$ where D is the disk $x^2 + y^2 \le 1$.
 - (b) curl F = (1, 1, 1) and the rest is similar to the solution to Problem 3(a).
 - (c) Since $curl F = \alpha(1+2y)\hat{k}$, by Stokes' theorem, $\oint_C F \cdot dR = \iint_R (0,0,\alpha(1+2y)) \cdot (0,1,1) dx dy = \alpha \int_0^{2\pi} \int_0^1 (1+2r\sin\theta) r dr d\theta = \alpha\pi$. Hence $\alpha = 2$.
 - (d) Let D be the disk $x^2 + y^2 \le 1$ and z = 0. By Stokes' theorem, $\oint_C F \cdot dR = \iint_D (0, 0, \alpha) \cdot (0, 1, 1) dx dy = \alpha \iint_D dx dy$. Hence $\alpha = 2$.
- 4. (a) Since curl F = (1, 1, 1) and $(-f_x, -f_y, 1) = (-1, 0, 1)$, by Stokes' theorem $\oint_C F \cdot dR = 0$.
 - (b) Observe that C is the circle $x^2 + y^2 = 4$ and z = 1. Moreover, C is also the boundary for the surface S_1 which is the part of the plane z = 1 that lies inside the cylinder $x^2 + y^2 = 4$. By Stokes' theorem, $\oint_C F \cdot dR = \iint_{S_1} (curl F) \cdot \hat{n} d\sigma = \iint_D (1,1,1) \cdot (0,0,1) dx dy$ where D is the disk $x^2 + y^2 \leq 4$.
 - (c) The equation of the plane is z = 1 x y and hence $(-f_x, -f_y, 1) = (1, 1, 1)$. By Stokes' theorem, $\oint_C F \cdot dR = \iint_D 3dxdy$ where D is the triangular region whose vertices are (0,0), (0,1), (1,0).
 - (d) The solution to this problem is similar to that of Problem 4(b). Note that $\oint_C F \cdot dR = \iint_{S_3} curl F \cdot \hat{n} d\sigma$ where S_3 is the disk $x^2 + y^2 \le 1$ and z = 0. Hence $\oint_C F \cdot dR = \iint_D (1,1,1) \cdot (0,0,1) dx dy$ where $D = S_3$.
- 5. (a) By observation $F(x, y, z) = (0, 0, xe^y)$.
 - (b) Observe that $\iint_S (x^2 e^y y e^y) d\sigma = \iint_S curl F \cdot (x, y, z) d\sigma = \iint_S curl F \cdot \hat{n} d\sigma$. By Stokes' theorem, $\iint_S (x^2 e^y y e^y) d\sigma = \oint_C F \cdot dR$ where C is the unit circle in the xy-plane. Hence $\oint_C F \cdot dR = \oint_C x e^y dz = 0$.
- 6. Observe that C is the boundary of the part of the surface z=x+4 that lies inside the cylinder $x^2+y^2=1$. Note that $curlF=(0,2z+e^z,4)$. By Stokes' theorem $\oint_C F \cdot dR = \iint_D (0,2z+e^z,4) \cdot (-1,0,1) dx dy$ where D is the unit circle in the xy-plane.
- 7. The boundary C of the surface S is defined by $(3\sin\theta, 3\cos\theta, 4)$. Note that C is oriented clockwise when viewed from above. By Stokes' theorem, $\iint_S curl F \cdot \hat{n} d\sigma = \oint_C F \cdot dR = \int_0^{2\pi} (3\cos\theta, -3\sin\theta, 32 + 9\sin^2\theta) \cdot (3\cos\theta, -3\sin\theta, 0) d\theta = 18\pi$.