PP 39: Divergence Theorem

1. Let D be the solid bounded by z = 0 and the paraboloid $z = 4 - x^2 - y^2$. Let S be the boundary of D. If

$$F(x, y, z) = (x^{3} + \cos(yz), y^{3}, x + \sin(xy)),$$

find $\iint_S F \cdot \hat{n} d\sigma$ where \hat{n} is the unit outward normal to the surface S.

2. Let S be the sphere $x^2 + y^2 + z^2 = 1$. Evaluate the surface integral

$$\iint_{S} [x(2x+3e^{z^{2}}) + y(-y-e^{x^{2}}) + z(2z+\cos^{2}y)]d\sigma.$$

3. Let S be the sphere $x^2 + y^2 + (z - 1)^2 = 9$. Find the unit outward normal to the surface S and evaluate the surface integral

$$\iint_{S} [x^{2} \sin y + y \cos^{2} x + (z - 1)(y^{2} - z \sin y)] d\sigma.$$

- 4. Let D be the region enclosed by the surfaces $x^2 + y^2 = 4$, z = 0 and $z = x^2 + y^2$. Let S be the boundary of D and \hat{n} denote the unit outward normal vector to S. Suppose F is a vector field whose components have continuous first order partial derivatives. If $div F = \alpha(x-1)$ for some $\alpha \in \mathbb{R}$ and $\iint_S F \cdot \hat{n} d\sigma = \pi$, evaluate α .
- 5. Let S be the sphere $x^2 + y^2 + z^2 = 1$. Suppose for some $\alpha \in \mathbb{R}$, $\iint_S [zx + \alpha y^2 + xz] d\sigma = \frac{4\pi}{3}$. Find α .
- 6. Let S be the hemisphere $x^2 + y^2 + z^2 = 1$ and $z \ge 0$. Evaluate $\iint_S [(z + \cos z)x + y^2 + xz]d\sigma$.

Practice Problems 39: Hints/Solutions

1. By divergence theorem

$$\iint_{S} F \cdot \hat{n} d\sigma = \iiint_{D} div F dV = \iiint_{D} 3(x^{2} + y^{2}) dV = \int_{0}^{2\pi} \int_{0}^{2} \int_{0}^{4-r^{2}} 3r^{2} r dz dr d\theta = 32\pi.$$

- 2. Observe that the given surface integral is $\iint_S F \cdot \hat{n} d\sigma$ where $F(x,y,z) = (2x + 3e^{z^2}, -y e^{x^2}, 2z + \cos^2 y)$ and $\hat{n} = (x,y,z)$ which is the unit outward normal to the sphere. By divergence theorem $\iint_S F \cdot \hat{n} d\sigma = \iiint_D div F dV = 3 \iiint_D dV = 4\pi$.
- 3. The given sphere S is g(x,y,z)=9 where $g(x,y,z)=x^2+y^2+(z-1)^2$. The unit normal vector \hat{n} of S is $\frac{\nabla g}{\|\nabla g\|}=\frac{1}{3}(x,y,z-1)$. Verify that \hat{n} is the unit outward normal vector. The given surface integral is $\iint_S F \cdot \hat{n} d\sigma$ where $F(x,y,z)=(x\sin y,\cos x,y^2-z\sin y)$. By divergence theorem, $\iint_S F \cdot 3\hat{n} d\sigma=3\iiint_D div F dV=0$.
- 4. By divergence theorem $\iint_S F \cdot \hat{n} d\sigma = \iiint_D \alpha(x-1) dV = \alpha \int_0^{2\pi} \int_0^2 \int_0^{r^2} (r\cos\theta 1) dz r dr d\theta = -8\pi\alpha$. Therefore $\alpha = -\frac{1}{8}$.
- 5. Let D denote the solid enclosed by the surface S. By divergence theorem, $\iint_S (z, \alpha y, x) \cdot (x, y, z) d\sigma = \iiint_D \alpha dV = \alpha \frac{4\pi}{3}$. Hence $\alpha = 1$.
- 6. Let $F(x,y,z)=(z+\cos z,y,x)$ and S_1 be the disk $x^2+y^2\leq 1,\ z=0$. Note that S is not a closed surface. Suppose D denotes the solid $x^2+y^2+z^2\leq 1,\ z\geq 0$. By divergence theorem, $\iint_S [(z+\cos z)x+y^2+xz]d\sigma=\iiint_D div F dV-\iint_{S_1} (z+\cos z,y,x)\cdot (-\hat{k})d\sigma=\frac{2\pi}{3}$.