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Abstract

Numerous efforts have been made to develop various indices using remote sensing data such as normalized difference

vegetation index (NDVI), vegetation condition index (VCI) and temperature condition index (TCI) for mapping and monitoring

of drought and assessment of vegetation health and productivity. NDVI, soil moisture, surface temperature and rainfall are

valuable sources of information for the estimation and prediction of crop conditions. In the present paper, we have considered

NDVI, soil moisture, surface temperature and rainfall data of Iowa state, US, for 19 years for crop yield assessment and

prediction using piecewise linear regression method with breakpoint. Crop production environment consists of inherent sources

of heterogeneity and their non-linear behavior. A non-linear Quasi-Newton multi-variate optimization method is utilized, which

reasonably minimizes inconsistency and errors in yield prediction.

Minimization of least square loss function has been carried out through iterative convergence using pre-defined empirical

equation that provided acceptable lower residual values with predicted values very close to observed ones (R2 = 0.78) for Corn

and Soybean crop (R2 = 0.86) for Iowa state. The crop yield prediction model discussed in the present paper will further improve

in future with the use of long period dataset. Similar model can be developed for different crops of other locations.
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1. Introduction

Monitoring of crop conditions is important for the

economic development of any nation. The use of

remote sensing has proved to be very important in
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monitoring the growth of agricultural crops and in

irrigation scheduling. Efforts have been made to

develop various indices for different crops of different

regions throughout the globe. The production of crop

and prediction of crop yield have direct impact on

year-to-year national and international economies and

play an important role in the food management (Hayes

and Decker, 1996). Using remote sensing data, efforts

have been made to develop various indices such as:
.
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normalized difference vegetation index (NDVI), vege-

tation condition index (VCI) and temperature condition

index (TCI). These indices are commonly used for

drought detection, monitoring excessive soil wetness,

assessment of weather impacts on vegetation and

evaluation of vegetation health and productivity

(Unganai and Kogan, 1998; Kogan, 2001, 2002; Kogan

et al., 2003; Singh et al., 2003). The NDVI data have

been used extensively in vegetation monitoring, crop

yield assessment and forecasting (Hayes et al., 1982;

Benedetti and Rossinni, 1993; Quarmby et al., 1993).

The US Corn Belt provides approximately 80% of

the overall maize production for the entire US, and

accounts for 36% of the global maize production

(USDA, 1987). The United States Department of

Agriculture (USDA) forecasts crop supply and

demand estimates including expected crop yields

every month during the crop season beginning in early

January. The ability of the CERES-Maize model to

estimate annual fluctuations in maize production for

the US Corn belt was tested for the years 1982–1985

(Hodges et al., 1987). Spatial interactions in the

CROPGRO-Soybean and CERES-Maize models and

comparison of simulated and measured data are also

studied (Batchelor et al., 2002). Optimizing crop-

growth/yield models for Corn and Soybeans crops in

USA was evaluated using the multi temporal high-

resolution airborne digital imagery.

NDVI has been considered to be a useful way for

crop yield assessment models using various

approaches from simple integration to more compli-

cated transformation. NDVI reflects vegetation green-

ness, thus it indicates levels of healthiness in the

vegetation development. Although vegetation devel-

opment of crop fields may differ from those of natural

vegetation because of human influences involved such

as irrigation, use of fertilizer and pesticides, NDVI is

considered as a valuable source of information for the

crop conditions. Different methods such as neural

network (Stoikos, 1995), autoregressive (AR) state-

space models (Wendroth et al., 2003), least-square

regression (Jones, 1982), exponential-linear (EL) crop

growth algorithm (Oroda, 2001) and numerical crop

yield model (Hayes et al., 1982) have been used to

predict crop yield with moderate success.

The ground and satellite (NOAA, Meteosat, etc.)

measurements are commonly used to deduce various

parameters such as evapotranspiration (Doorenbos
and Kassam, 1979; Oroda, 2001), NDVI, soil type

(Garcia-Paredes et al., 2000), light, carbon dioxide,

temperature, water and the rate of growth and

development (Monteith, 1981) and crop–weather

relations (Watson, 1963; Baier, 1977; Frere and

Popov, 1979; WMO, 1982; van Keulen, 1987;

NCMRWF, 1990; Jain and Ranjana, 2000) are

increasingly used to predict crop yield. Present crop

yield estimation is based on various methods and data

sources like field surveys, expert knowledge, trend

analysis, regression analysis, statistical models and

crop growth simulation models. In this paper, we have

developed a crop yield prediction model based on

Iowa Corn and Soybean yield estimates utilizing

NDVI, surface temperature (ST), precipitation and

soil moisture (SM).
2. Methods

2.1. Selection of a crop region

State of Iowa (Fig. 1a) belongs to the US Corn Belt,

recorded the highest harvested cropland in 1997

(USDA, 1997). We have considered 10 top counties of

Corn and Soybean production in 2000 of Iowa state,

which is total combination of 14 counties to develop a

crop yield assess model for Corn and Soybeans.

Iowa state is lying in the humid temperate zone

which can be approximated as a rectangular area with

corner coordinates (978W, 43.58N), (978W, 40.58N),

(908W, 40.58N) and (908W, 43.58N). The total area of

Iowa is about 35,756,390 and 11,700,000 acres

consists of planted Corn for grain in the year 2001,

which is about 32.7% of the total area. Iowa state

produced 17.9% of all Corn for grain in the US total of

1997, ranking the highest production in the US

(USDA, 1997) and Soybean farming is the second

largest crop after Corn, and about 10,920,000 acres

were harvested in the year 2001.

2.2. Data

Crop yield data (Fig. 1b) of Corn and Soybean for

Iowa state have been used, Corn crop is planted in

early May, growth in biomass occurs from June to

September and is ready for harvesting in September.

Therefore, temporal annual average of NDVI, soil



A.K. Prasad et al. / International Journal of Applied Earth Observation and Geoinformation xxx (2005) xxx–xxx 3

DTD 5

Fig. 1. (a) Map of USA showing location of Iowa for which Corn and Soybean crop yield prediction model is derived. (b) Corn and Soybean crop

yield from 1982 to 2001.
moisture, surface temperature and rainfall (RF) data

for period May to September have been used in the

present analysis for 19 years from 1982 to 2001

(excluding 1994). Soybean crop season starts with

active sowing period from mid of May to early June.

Crop growth occurs from June to September and

harvesting mostly in October. For Soybean, temporal

annual average of NDVI, SM, ST and rainfall data for

the months June to September for 19 years period

(1982 to 2001, excluding 1994) have been used for

analysis. Monthly composite NDVI data were

spatially averaged over Iowa region (annual mean

of growth season average; Corn (May to September)

and Soybean (June to September)), from 1982 to 2001.

Fig. 2a–d shows the annual growth season average of

NDVI, SM, ST and RF from 1982 to 2001.

2.2.1. National Agricultural Statistics Service

(NASS) Corn and Soybeans yield estimates

Corn and Soybean yield estimates have been

obtained electronically from NASS/USDA database

site (http://www.usda.gov/nass/). The Corn yield

(Fig. 1b) estimates are available for the years from

1866 to 2004 whereas the Soybeans yield (Fig. 1b)

estimates are available for the years from 1924 to

2004. Note that Soybeans belong to the category of

‘Oilseeds and Cotton’. The datasets provide planted

and harvested acres, yield per acre and production in

bushel.
2.2.2. NDVI

We have used 8 km � 8 km monthly composite

continental NDVI datasets from the pathfinder

advanced very high-resolution radiometer (AVHRR)

collected by National Oceanic and Atmospheric

Administration’s (NOAA) polar orbiters from 1982

to 2001. NDVI is level 3 data derived from Channel 1

(visible band) and Channel 2 (near-infrared band). The

visible wavelength attenuation encountered in

AVHRR observations do not show significant differ-

ence from the Landsat multi-spectral scanner (MSS)

and Thematic Mapper (TM) sensors or the French

Satellite Probatoire d’Observation de la Terre (SPOT)

sensors. The attenuation is considerably more

sensitive to water vapor in the near infrared than

the other land observing sensors (Goward et al., 1991).

The NDVI derived from NOAA 11 data shows values

0.05 higher than earlier NOAA missions for African

desert. An error in the solar zenith angle (SZA) has

also been discovered. However, NDVI in the

pathfinder AVHRR land (PAL) dataset received by

the users in HDF format are less affected by errors in

the solar zenith angle (http://daac.gsfc.nasa.gov/

CAMPAIGN_DOCS/LAND_BIO/zenith_angle_me-

mo.html).

Quantitative interpretation of NDVI is compli-

cated by numerous intervening factors such as

instrument calibration, incident solar irradiance,

nominal atmospheric attenuation, variable spatial

http://www.usda.gov/nass/
http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/LAND_BIO/zenith_angle_memo.html
http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/LAND_BIO/zenith_angle_memo.html
http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/LAND_BIO/zenith_angle_memo.html
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Fig. 2. Annual growth season average NDVI (a) and soil moisture (SM) (mm) (b) variation for Iowa (1982–2001). Annual growth season

average surface temperature (Kelvin) (c) and rainfall (mm) (d) variation for Iowa (1982–2001).
resolution, anisotropy with off-nadir views, and cloud

occurrence. These factors combine to produce a global

dataset that has, at best, a measurement precision of

E0.1 NDVI units (E10% error) over 1 year at a

temporal resolution somewhere between 10 days and 1

month (Goward et al., 1991).

The dry matter accumulation of the Corn leaves

mature by mid July and almost constant from mid July

to the beginning of September (Iowa State University

of Science and Technology, 1996). The maximum

vegetation greenness of Iowa region generally occurs

in August. We have examined spatially averaged

NDVI for the months of Corn growing season, which

is used for Corn yield estimates. NDVI data are

permanently missing for September to December

1994; therefore, 1994 data is excluded from model due

to non-availability of September NDVI.

2.2.3. Precipitation

Rainfall data (http://www1.ncdc.noaa.gov/pub/

data/cirs/) is available as monthly average within a

climatic division calculated using equal weight to

stations reporting both temperature and precipitation
within a division. Monthly average total rainfall

(unit: mm) is taken from above dataset from 1982 to

2001.

2.2.4. Temperature

Monthly surface temperature data is taken from

NOAA NCEP-NCAR CDAS-1 monthly diagnostic

surface temperature database (unit: Kelvin) (http://

iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP-

NCAR/).

2.2.5. Soil moisture

Soil moisture data have been taken from NOAA

NCEP CPC global monthly soil moisture dataset

(unit: mm) http://iridl.ldeo.columbia.edu/SOURCES/

.NOAA/.NCEP/). Soil moisture is based on the water

balance in the soil.

2.3. Methodology

Crop yield is considered as dependent variable that

varies diversely with independent variables like

NDVI, SM, ST and RF. Variations of NDVI, SM,

http://www1.ncdc.noaa.gov/pub/data/cirs/
http://www1.ncdc.noaa.gov/pub/data/cirs/
http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP-NCAR/
http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP-NCAR/
http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP-NCAR/
http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/
http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/
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Table 1

Coefficients and breakpoint for Corn and Soybean crop yield model

empirical equation for Iowa

Model variable Coefficients Corn Soybean

Constant c1 �12733.9 445.2006

NDVI a1 156.4193 �1.12634

SM a2 �0.17942 �0.02641

ST a3 51.13045 �1.25083

Rainfall a4 �31.7037 �0.45429

Constant c2 �4039.71 �211.01

NDVI b1 80.32816 17.57264

SM b2 0.017716 �0.02533

ST b3 16.03083 0.967642

Rainfall b4 �8.51827 �0.45243

Breakpoint 124.4737 40.36842

R 0.88055 0.93053

Variance accounted (%) 77.53 86.58

R2 0.78 0.86
ST and RF data do not follow any distinct linear

combination and with respect to crop yield. It is

therefore difficult to model such a dynamic relation-

ship using conventional linear methods like multi-

variable multiple regression. Non-linear estimation

approach is used to compute the relationship between

a set of independent variables and a dependent

variable. A two-piece empirical equations is devised

and solved using non-linear Quasi-Newton method.

Crop yield estimation equation with coefficients is

derived by minimizing loss function for Corn and

Soybean crop separately based on the 19 years dataset.

Non-linear piecewise linear regression with break-

point (Quasi-Newton method) (Belegundu and Chan-

drupatla, 1999; Setiono et al., 2002) have been used to

develop model for prediction of crop yield. Various

steps of this model involve (1) identifying an initial

model, (2) iterative convergence using the ‘‘stepping

criteria,’’ and (3) terminating the search when either

stepping criteria or number of iterations allowed

reached its limit.

Empirical equation is based on piecewise linear

regression method with breakpoint. Quasi-Newton

methods have been used for multi-variate optimization

(Belegundu and Chandrupatla, 1999). It is non-linear

method that has been used to minimize least square

loss function through iterative convergence of pre-

defined empirical equation. In Quasi-Newton Method,

the first-order derivative of the function at a point is

computed to find the slope of a function at that point.

Subsequent second-order derivative indicates how fast

the slope is changing at the respective point and its

direction. The Quasi-Newton method evaluates the

function at different points at each step in order to

estimate the first-order derivatives and second-order

derivatives, which is used to find out the minimum of

the loss function. Quasi-Newton is an iterative method

that is primarily governed by minimization of chosen

loss function (i.e. achieved global minima point where

observed is closest possible to simulated value which

in principle can be a 100% match). Chosen loss

function can differ based on objective and here it is a

commonly applied least square loss function, i.e.

square of the difference between predicted and

observed value (objective is to achieve lowest possible

difference between observed and predicted value).

The iterative method works for multi-independent

variables and dependent variable crop yield both
above and below the breakpoint. A non-linear

optimization approach achieves acceptable lower

residual values with predicted values very close to

observed values.

2.4. Model

Coefficients of empirical equation have been

obtained using this method. Breakpoint (m) chosen

is the mean of 19 year Corn or Soybean crop yield

of Iowa. In rare case, if breakpoint (m) becomes

equal to crop yield, condition of crop yield >
breakpoint should be applied. The model empirical

equations for Corn and Soybean crops, thus ob-

tained with coefficients (Table 1) is given as:

crop yield ¼ ðc1 þ ða1 � NDVIÞ þ ða2 � SMÞ
þ ða3 � STÞ þ ða4 � RFÞÞ
ffor crop yield< breakpoint mg

or ðc2 þ ðb1 � NDVIÞ þ ðb2 � SMÞ þ ðb3 � STÞ
þ ðb4 � RFÞÞ
ffor crop yield> breakpoint mg

where NDVI, normalized difference vegetation index;

SM, soil moisture (mm); ST, surface temperature

(Kelvin); RF, rainfall (mm); c1, c2, ai, bi, for i = 1–4

are coefficients (Table 1); m = mean Corn or Soybean

crop yield (1982–2001, excluding 1994) (breakpoint).
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Fig. 3. Observed and predicted crop yield (model) of Corn (a) and Soybean (b) crop for Iowa. R2-values are 0.78 for Corn and 0.86 for

Soybean.
Loss function used is least square, i.e Lf = (obser-

ved � predicted)2

The Quasi-Newton method utilizes this loss

function to arrive at a solution closest possible to

observed data. At each iteration loss function is

computed to minimize square of difference between

the observed and predicted crop yield using pre-

defined empirical equation. The method is an

optimization process, which runs as long as initial

values, stepping values, number of iterations and

convergence criteria are favorable. It terminates if

any of these bounding conditions are fulfilled.

Therefore, loss function can approach theoretically

up to R2 100%. It depends on degree to which

independent variables considered control depend-

able variable and absence of any other major

governing factor affecting crop yield in a year. This

approach can give results, which are closer to real

value. Small dataset (7–10 years) gave better result

than large dataset (say 19 years data) due to less

variation in pattern of SM, ST, RF, NDVI and crop

yield.

NDVI, SM, ST and RF data are major indicators or

variables controlling the normal crop growth. This

approach can be used to predict any shortfall in crop

yield using empirical equations. Coefficients used in

derived equation largely depend on pool of historical

data. Studying NDVI, SM, ST and RF data region wise

before harvesting period and employing above

methodology (with modifications) can be used to

predict crop yield for that season.
3. Results and discussion

The fitted model (Fig. 3b) agrees well with

Soybean crop. Residual values in individual years

are within acceptable limits with more or less even

distribution of difference from observed crop yield.

Similarly, Corn crop (Fig. 3a) also shows even

distribution of residual values for all years except

for 1993. Still the model agrees well for the year 1993

that has witnessed a steep fall (	46%) in observed

crop yield compared with the preceding year (Table 2).

It shows that crop yield is possibly also affected by

some other factors that may dominate in some years

causing steep fall. A moderate to high R2-values 0.78

for Corn and 0.86 for Soybean show that in most years,

crop yield is largely governed by variables considered

in model.

However, other factors like pests, diseases and

human activities can cause local variations in

predicted crop yield. This is a serious limitation to

any forecasting method including this. However,

inclusion of NDVI in model partly takes care of loss

due to diseases or pests that directly affect vegetation.

Crop yield prediction method is expected to yield

good prediction results due to low residual values

comparing with the historical data. The model can be

optimized and evolve to be more rugged with growing

historical data for better prediction. This exercise

includes data for 19 years and yield better prediction

results considering year-to-year variation of control-

ling factors.
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Table 2

Predicted and observed crop yield of Corn and Soybean crop for Iowa using non-linear piecewise linear regression with breakpoint (Quasi-

Newton) method

Year Corn crop yield Soybean crop yield

Observed Predicted Residual Observed Predicted Residual

1982 120 106.5419 13.4581 36.5 34.9126 1.5874

1983 87 83.7547 3.2453 35.0 31.2125 3.7875

1984 112 102.6428 9.3572 31.5 33.8647 �2.3647

1985 126 138.4765 �12.4765 38.0 36.8840 1.1160

1986 135 130.1821 4.8179 41.5 41.9016 �0.4016

1987 130 131.7217 �1.7217 43.5 43.3660 0.1340

1988 84 98.5832 �14.5832 31.0 34.2990 �3.2990

1989 118 123.8340 �5.8340 39.0 37.7836 1.2164

1990 126 136.5609 �10.5609 41.5 41.9585 �0.4585

1991 117 110.6744 6.3256 40.5 43.4231 �2.9231

1992 147 139.1637 7.8363 44.0 43.6675 0.3325

1993 80 105.4158 �25.4158 31.0 33.0437 �2.0437

1995 123 109.5531 13.4469 44.0 43.0535 0.9465

1996 138 139.6419 �1.6419 44.0 43.6592 0.3408

1997 138 137.0569 0.9431 46.0 46.8009 �0.8009

1998 145 139.4707 5.5293 48.0 44.5158 3.4842

1999 149 148.6499 0.3501 44.5 44.7721 �0.2721

2000 144 144.5584 �0.5584 43.5 44.7258 �1.2257

2001 146 138.5173 7.4827 44.0 43.1563 0.8437
This model can be further improved with usage of

high-resolution data with availability of multi-year

data. This method involves simple input dataset and can

be suitably modified to add or drop variables depending

on climate, region and crop type and can be easily

extended for other crops. Modification in approach is

required to use this methodology in prediction mode.

For instance, a weekly or 10 days composite of input

data (before harvesting month) can be compared with

other measures of crop yield like dry matter productiv-

ity (DMP) and net primary productivity (NPP) for

multiple years to arrive at predicted crop yield for

current year.
4. Conclusion

Crop production environment consists of inherent

sources of heterogeneity due to numerous parameters.

The model discussed in the present paper reasonably

minimizes inconsistency and errors in yield prediction

giving high R2-values with maximum accounting of

variability in model. The model takes care of most of

the parameters, which control the crop yield. This

method can be used to predict crop yield for other
crops as well as Corn and Soybeans. Based on data

obtained before harvest, crop yield can be predicted

with acceptable accuracy. Piecewise linear regression

equation with breakpoint (Quasi-Newton method) can

be extended to other countries as well, where crop

production is primarily dependent on weather and

climatic conditions. The model developed in the present

paper shows a promising result, which can be useful for

forecasting crop yields such as Corn and Soybeans and

other crops in regional and global scales.
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