Review from Calculus
 Math 301

I. The following are graphs of functions listed below. Match the functions with their graphs.

(i) $f(x)=\sin (x) \quad$ (ii) $f(x)=x \sin (x) \quad$ (iii) $f(x)=x^{3}$
(iv) $f(x)=\frac{\sin (x)}{x}$
(v) $f(x)=\frac{1}{x}$
(vi) $f(x)=|x|$
II. We write

$$
\lim _{x \rightarrow a-} f(x)=L
$$

if we can make values of $f(x)$ artbitrarily close to L by taking x to be sufficiently close to a and less than a.
Similarly for $x>a$ we write

$$
\lim _{x \rightarrow a+} f(x)=R
$$

If $L=R$ then this number is the limit of $f(x)$ as x tends to a and is denoted by

$$
\lim _{x \rightarrow a} f(x)=L
$$

Compute the following limits for every f listed in Problem I (use graphs if you like) if they EXIST!
(i)

$$
\lim _{x \rightarrow 1} f(x)
$$

(ii)

$$
\lim _{x \rightarrow 0} f(x)
$$

III We say that f is continuous at a if limit of $f(x)$ as x tends to a exist and

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Check whether the function you are considering is continuous at 0 .
IV. Compute $\frac{d f(x)}{d x}$ for the functions in Problem I and evaluate at $\mathrm{x}=0$ (If it EXISTS!).
V. Evaluate
(i)

$$
\int x e^{x} d x
$$

(ii)

$$
\int \frac{x+1}{x^{2}-4} d x \text {. }
$$

