Tutorial 2 Exercises MTH 301 (Need not be submitted)
August 4, 2011
Fix $b \in \mathbb{R}, b>1$
(i) If m, n, p, q be integers $n>0, q>0$ and $r=\frac{m}{n}=\frac{p}{q}$, then show that

$$
\left(b^{m}\right)^{1 / n}=\left(b^{p}\right)^{1 / q} .
$$

Hence define $b^{r}=\left(b^{m}\right)^{1 / n}$.
(ii) Prove that $b^{r+s}=b^{r} . b^{s}$ if r and s are rational.
(iii) If x is real, then define $B(x)=\left\{b^{t} \mid t \in \mathbb{Q}, t \leq x\right\}$. Prove that if r is rational then $\sup B(r)=b^{r}$.
Define, $b^{x}=\sup B(x)$.
(iv) Prove that $b^{x+y}=b^{x} . b^{y}$ for all $x, y \in \mathbb{R}$.

