TUTORIAL 2 EXERCISES MTH 301 (NEED NOT BE SUBMITTED)

August 4, 2011

- Fix $b \in \mathbb{R}, b > 1$
 - (i) If m, n, p, q be integers n > 0, q > 0 and $r = \frac{m}{n} = \frac{p}{q}$, then show that

 $(b^m)^{1/n} = (b^p)^{1/q}.$ Hence define $b^r = (b^m)^{1/n}.$

- (ii) Prove that $b^{r+s} = b^r b^s$ if r and s are rational.
- (iii) If x is real, then define $B(x) = \{b^t \mid t \in \mathbb{Q}, t \leq x\}$. Prove that if r is rational then $\sup B(r) = b^r$. Define, $b^x = \sup B(x)$.
- (iv) Prove that $b^{x+y} = b^x \cdot b^y$ for all $x, y \in \mathbb{R}$.