TUTORIAL I

- 1. Use induction to show that $n! \ge 2^n$ for all n > 4.
- 2. Use induction to prove the following statement also known as the Well Ordering Principle. Every non-empty subset of natural numbers has a least number, namely, if $A \neq \emptyset$ is a subset of N then there exists $a \in A$ such that $a \leq k$ for all $k \in A$. (Hint: Assume that A has no least number. Consider the set B of lower bounds of A. Note that B and A cannot have any numbers in common. Now use induction to complete proof by contradiction.)
- 3. Let a,b and c be rational numbers. Use the fact that Q is an ordered field to prove the following (this means you can use the 11 properties we stated for a field in class and the 2 properties needed for a field to be ordered).
 (i) −(−a) = a.
 - (ii) If $a \neq 0$ and ab = ac then b = c.
 - (iii) a.0 = 0.
 - (iv) If a > 0 then ab > 0 implies b > 0. (Prove by contradiction)
 - (v) If 0 < a < b then $0 < \frac{1}{b} < \frac{1}{a}$. (Hint: 1 > 0 and previous argument)
- 4. Let $A = \{p \in \mathbb{Q} \mid p > 0, p^2 < 2\}$ and $B = \{p \in \mathbb{Q} \mid 2 < p^2, p > 0\}$. (i) Let $q = p - \frac{p^2 - 2}{(p+2)}$. Show that q > p if $p \in A$ and q < p if $p \in B$.

(ii) Show that
$$q^2 - 2 = \frac{2(p-2)}{(p+2)}$$

(iii) Show that A does not have least upper bound in \mathbb{Q} and B does not have greatest lower bound in \mathbb{Q} .

Following at problems from Chapter 1, in the textbook

- Chapter 1, Pb 4 Let A be an nonempty subset of \mathbb{R} that is bounded above. Show that there is a sequence (x_n) of elements of A that converges to supA.
- Chapter 1, Pb. 7 If a < b then there is also an irrational $x \in \mathbb{R}/\mathbb{Q}$ with a < x < b.[Hint: Find an irrational of the form $\frac{p\sqrt{2}}{a}$]