Tutorial I

1. Use induction to show that $n!\geq 2^{n}$ for all $n>4$.
2. Use induction to prove the following statement also known as the Well Ordering Principle. Every non-empty subset of natural numbers has a least number, namely, if $A \neq \emptyset$ is a subset of \mathbb{N} then there exists $a \in A$ such that $a \leq k$ for all $k \in A$. (Hint: Assume that A has no least number. Consider the set B of lower bounds of A. Note that B and A cannot have any numbers in common. Now use induction to complete proof by contradiction.)
3. Let a, b and c be rational numbers. Use the fact that \mathbb{Q} is an ordered field to prove the following (this means you can use the 11 properties we stated for a field in class and the 2 properties needed for a field to be ordered).
(i) $-(-a)=a$.
(ii) If $a \neq 0$ and $a b=a c$ then $b=c$.
(iii) $a .0=0$.
(iv) If $a>0$ then $a b>0$ implies $b>0$. (Prove by contradiction)
(v) If $0<a<b$ then $0<\frac{1}{b}<\frac{1}{a}$. (Hint: $1>0$ and previous argument)
4. Let $A=\left\{p \in \mathbb{Q} \mid p>0, p^{2}<2\right\}$ and $B=\left\{p \in \mathbb{Q} \mid 2<p^{2}, p>0\right\}$.
(i) Let $q=p-\frac{p^{2}-2}{(p+2)}$. Show that $q>p$ if $p \in A$ and $q<p$ if $p \in B$.
(ii) Show that $q^{2}-2=\frac{2\left(p^{2}-2\right)}{(p+2)}$.
(iii) Show that A does not have least upper bound in \mathbb{Q} and B does not have greatest lower bound in \mathbb{Q}.

Following at problems from Chapter 1, in the textbook
Chapter $1, \mathrm{~Pb} 4$ Let A be an nonempty subset of \mathbb{R} that is bounded above. Show that there is a sequence $\left(x_{n}\right)$ of elements of A that converges to $\sup A$.
Chapter 1, Pb. 7 If $a<b$ then there is also an irrational $x \in \mathbb{R} / \mathbb{Q}$ with $a<x<b$. [Hint: Find an irrational of the form $\frac{p \sqrt{2}}{q}$]

