MATH 301 TUTORIAL 10

1. Reimann-Stieljes Integral

- (1) Let $\alpha_1, \alpha_2, \alpha : [a, b] \to \mathbb{R}$ be increasing functions. Let $f, g : [a, b] \to \mathbb{R}$ be integrable with respect to α . Let $c \in \mathbb{R}$. Show that
 - (a) $cf \in R_{\alpha}[a,b]$ and $\int_{a}^{b} cf \, d\alpha = c \int_{a}^{b} f \, d\alpha$.
 - (b) If $f \in R_{\alpha_1}[a, b]$ and $f \in \mathbb{R}_{\alpha_2}[a, b]$ then $f \in R_{\alpha_1 + \alpha_2}[a, b]$ and $\int_a^b f \, \mathrm{d}(\alpha_1 + \alpha_2) = \int_a^b f \, \mathrm{d}\alpha_1 + \int_a^b f \, \mathrm{d}\alpha_2$
 - (c) $f \in R_{c\alpha}[a, b]$ and

$$\int_{a}^{b} f \, \mathrm{d}(c\alpha) = \int_{a}^{b} f \, c\mathrm{d}\alpha.$$

(d) If $f \leq g$ then

$$\int_{a}^{b} f \, \mathrm{d}\alpha \le \int_{a}^{b} g \, \mathrm{d}\alpha.$$

- (2) Page 218, Problem 6(a)
- (3) Page 225, Problem 26.
- (4) Page 234, Problem 50.
- (5) Give an example of a bounded real function on [0, 1] which is not integrable.

2. Equicontinuity and Ascoli-Arzela Theorem

Definition 1. A set $\mathscr{F} \subset B(X)$ of real valued functions on (X, d), is said to be **uniformly bounded** if $\sup_{f \in \mathscr{F}} ||f||_{\infty} < \infty$.

Definition 2. A set $\mathscr{F} \subset B(X)$ of real valued functions on (X, d) is called equicontinuous if given any $\epsilon > 0$ there exists a $\delta > 0$ such that

$$d(x,y) < \delta \implies |f(x) - f(y) < \epsilon, \ \forall f \in \mathscr{F}.$$

- (1) Show that every totally bounded subset of C(X) is uniformly bounded.
- (2) Show that every totally bounded subset of C(X) is equicontinuous. (Hint: Every totally bounded set can be covered by finite number of ϵ -balls)

- (3) Let (f_n) be a convergent sequence in C(X). Then $\{f_n \mid n \in \mathbb{N}\}$ is uniformly bounded and equicontinuous. (Show $\{f_n \mid n \in \mathbb{N}\}$ is totally bounded.)
- (4) Let (X, d) be a compact metric space and $\mathscr{F} \subset C(X)$. Show that if \mathscr{F} is closed then it is complete.
- (5) Let (X, d) be a compact metric space and $\mathscr{F} \subset C(X)$. Let \mathscr{F} be closed uniformly bounded and equicontinuous.
 - (a) Show that any sequence (f_n) in C(X) is equicontinuous and uniformly bounded.
 - (b) Since X is totally bounded, there exist x_i such that each $d(x, x_i) < \delta$ for some i and each $x \in X$. Using that (f_n) is uniformly bounded show that there exists a subsequence (f_{n_k}) such that we can find \mathbb{N} ,

$$|f_{n_k} - f_{n_l}| < \epsilon/3$$
, for any $l, k \ge N$.

for all i.

- (c) Using the previous two facts show that f_n has a Cauchy subsequence.
- (d) Conclude that \mathscr{F} is compact if and only if \mathscr{F} is closed, uniformly bounded and equicontinuous. This is the Ascoli-Arzela theorem