TUTORIAL II

- 1. Let A and B be bounded non empty subsets of \mathbb{R}
 - (a) Show that $A \cup B$ is a bounded subset of \mathbb{R} . Further prove that

 $\sup (A \cup B) = \sup \{\sup A, \sup B\}.$

- (b) Let $A + B = \{a + b \mid a \in A, b \in B\}$. Show that $\inf (A + B) = \inf A + \inf B$.
- 2. Show that every Cauchy sequence in \mathbb{R} is bounded.
- 3. (Prob. 11, pg7) Fix a > 0 and let $x_1 > \sqrt{a}$. For $n \ge 1$, define

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right).$$

Show that (x_n) converges and $\lim_{n\to\infty} x_n = \sqrt{a}$.

- 4. (Prob 18, pg 10)
 - (a) Given a > -1, $a \neq 0$ use induction to show that $(1 + a)^n > 1 + na$ for any integer n > 1.
 - (b) Use (a) to show that, for any x > 0 the sequence $(1 + \frac{x}{n})^n$ increases.
 - (c) If a > 0, show that $(1 + a)^r > 1 + ra$ holds for any rational exponent r > 1. (Hint : If r = p/q then apply (a) with n = q and (b) with x = ap.]
 - (d) Finally show that (c) holds for any *real* exponent r > 1.
- 5. (Prob 19, pg 10) If 0 < c < 1 show that $c^n \to 0$; and if c > 0 show that $c^{1/n} \to 1$. [Hint: Use Bernoullis' inequality in each case, once with c = 1/(1+x), x > 0 and once with $c^{1/n} = 1 + x_n$, where $x_n > 0$]
- 6. If $r \in \mathbb{Q}$ and x is irrational then show that r + x and rx are irrational. (Hint: Prove by contradiction)
- 7. (Prob 15, pg 7) Show that a Cauchy sequence of real numbers with a convergent subsequence converges.