MTH 301 TUTORIAL IV DUE ON AUGUST 30, 2011 SUBMIT ONLY THE STARRED EXERCISES

- 1. Show that any collection of pairwise, disjoint nonempty open intervals in \mathbb{R} is at most countable.
- 2. Let $2^{\mathbb{N}}$ denote the set of all sequences of 0's and 1's. Show that $d(a,b) = \sum_{n=1}^{\infty} 2^{-n} |a_n b_n|$ where $(a_n), (b_n) \in 2^{\mathbb{N}}$ is a metric on $2^{\mathbb{N}}$.
- 3. * Check which of the following given functions d : ℝ × ℝ → R are metrics on ℝ. If yes, show that its a metric, else explain why it is not a metric.
 (i) d(x, y) = (x y)².

(ii)
$$d(x,y) = \sqrt{|x-y|}$$
.
(iii) $d(x,y) = \frac{|x-y|}{1+|x-y|}$.

- 4.* Let (X, d) be a metric space. Show that finite union of bounded sets is again bounded.
- 5.* Show that for any $x \in \mathbb{R}^n$, $||x||_{\infty} \leq ||x||_2 \leq ||x||_1$. Also check that $||x||_1 \leq n ||x||_{\infty}$ and $||x||_1 \leq \sqrt{n} ||x||_2$.
- 6.* Show that $(l_{\infty}, || ||_{\infty})$ is a normed space. (These were defined in class).
- 7. Let (X, d) be a metric space. Show that every convergent sequence in X is Cauchy.
- 8. Two metrics d and ρ on a set M are said to be equivalent if they generate the same convergent sequences; that is, $d(x_n, x) \to 0$ if and only if $\rho(x_n, x) \to 0$. Show that on \mathbb{R}^2 , the metrics given by the norms $\| \|_2$ and $\| \|_{\infty}$ are equivalent.
- 9.* Show that if (X, d) and (Y, ρ) are two metric spaces, $(X \times Y, \nu)$ is a metric space where $\nu((x_1, y_1), (x_2, y_2)) = d(x_1, x_2) + \rho(y_1, y_2)$. Further show that if $U \subset X$ and $V \subset Y$ are open then the set $U \times V$ is open in $X \times Y$.