MTH 301 TUTORIAL V DUE ON SEPTEMBER 6, 2011 SUBMIT ONLY THE STARRED EXERCISES

- 1. Show that every open interval (and hence every open set) in \mathbb{R} is a countable union of closed itnervals and that every closed interval in \mathbb{R} is a countable intersection of open intervals.
- 2*. Let $e^{(k)} = (0, \dots, 1, \dots, 0)$ where the kth entry is 1 and the rest are 0. Show that $\{e^{(k)} \mid k \ge 1\}$ is a closed subset of l_1 .
- 3.* Show that the set $A = \{x \in l_2 \mid |x_n| leq 1/n, n \in \mathbb{N}\}$ is a closed subset of l_2 but that $B = \{x \in l_2 \mid |x_n| < 1/n\}$ is not an open set. (Hint: Does $B(0, \epsilon) \subset B$?).
- 4. Given a nonempty bounded subset E of \mathbb{R} show that sup E and inf E are elements of \overline{E} . Thus sup E and inf E are in E wherenever E is closed.
- 5.* Let A and B be subsets in a metric space (M, d). Show that $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$. Give an example showing that this inclusion can be proper.
- 6.* If $x \neq y$ in a metric space (M, d) show that there exist disjoint open sets U, V with $x \in U$ and $y \in V$ such that U and V are disjoint.
- 7.* Let A be subset of a metric space (M, d). Show that if x is a limit point of A then every neighbourhood of x contains infinitely many points of A.
- 8. A metric space is separable if it has a countable dense subset. Show that \mathbb{R}^2 and l_2 are separable. (Look at problem 49 on page 59 in the book for hint).