MATH 301 TUTORIAL 6

- (1) State whether the following statements are true or false. If true, prove the statement. If false, explain why? No points will be awarded for only stating true or false.
 - (a) Every sequence that has a convergent subsequence is bounded.
 - (b) * If A is uncountable and B is countably infinite, then A and $A \cup B$ are equivalent.
 - (c) Every Cauchy sequence has a convergent subsequence.
 - (d) *Let (X, d) be a metric space and A be a subset of X. Then, for any $E \subset A$, $\operatorname{int}_A(E) = A \cap \operatorname{int}_X(E)$, where $\operatorname{int}_A(E)$ denotes the interior of E in A and $\operatorname{int}_X(E)$ denotes the interior of E in X.
 - (e) Let (X, d) be a metric space. The function $\rho : X \times X \to \mathbb{R}$ defined as $\rho(x, y) = \frac{1}{1 + d(x, y)}$ is a metric on X.
- (2) * Let (x_n) be a sequence in \mathbb{R} where $x_1 > x_2 > 0$, such that (x_{2n}) is increasing and (x_{2n+1}) is decreasing. Given that $x_{n+1} = \frac{x_n + x_{n-1}}{2}$, show that (x_n) is convergent.
- (3) * Let (X, d_1) and (Y, d_2) be metric spaces and $f : X \to Y$ and $g : X \to Y$ be such that f(x) = g(x) on a dense set $D \subset X$. Show that f(x) = g(x)for all $x \in X$.
- (4) * Problem 1, page 64, Chapter 5 in Carothers.
- (5) *Problem 32, page 67, Chapter 5 in Carothers.
- (6) Problem 54, page 72 Chapter 5 Carothers.
- (7) Let (X, d) be a metric space and D be a countable dense subset of X. Show that X cannot have uncountably many disjoint open subsets.
- (8) (a) Show that $\| \|_{\infty}$ defines a norm on ℓ_2 .
 - (b) * Are the metrics induced by the norms $\| \|_{\infty}$ and $\| \|_2$ on ℓ_2 equivalent? Explain your answer.

- (9) * Let F be the set of all $\underline{x} = (x_n)$ in ℓ_1 such that $x_n = 0$ for all but a finite number of $n \in \mathbb{N}$. Is F closed? or open? or neither?
- (10) Let (X, d) be a metric space.
 - (a) Show that a convergent sequence (x_n) in X converges to a unique limit, that is, it cannot converge to more than one element in X.
 - (b) * Given that $\rho((x_1, x_2), (y_1, y_2)) = \sqrt{d(x_1, x_2)^2 + d(y_1, y_2)^2}$ is a metric on $X \times X$. Is the set $A = \{(x, x) \mid x \in X\} \subset X \times X$, closed in $(X \times X, \rho)$? Prove or disprove.