MATH 301 TUTORIAL 7

- (1) If $A \subset B \subset \overline{A} \subset (M, d)$, and if A is connected, show that B is connected. In particular, \overline{A} is connected. (Problem 9 page 82).
- (2) Prove that there does not exist a continuous function $f : \mathbb{R} \to \mathbb{R}$ satisfying $f(\mathbb{Q}) \subset \mathbb{R} \mathbb{Q}$ and $f(\mathbb{R} \mathbb{Q}) \subset \mathbb{Q}$. (Problem 17, page 83).
- (3) If $f : \mathbb{R} \to \mathbb{R}$ is continous and one-one, show that f is strictly monotone. (Problem 16, page 83)
- (4) Suppose that M is compact and that $f: M \to N$ is continuous, one-one and onto. Prove that f is a homeomorphism. (Problem 23, page 111)
- (5) Show that a subset A of \mathbb{R} is totally bounded if and only if it is bounded. (Problem 2, page 90)
- (6) Give an example of a closed bounded subset of ℓ_{∞} that is not totally bounded. (Problem 9, page 92)
- (7) If K is a non-empty compact subset of \mathbb{R} , show that $\sup K$ and $\inf K$ are elements of K. (Problem 1, page 109)
- (8) Let $E = \{x \in \mathbb{Q} : 2 < x^2 < 3\}$ considered as a subset of \mathbb{Q} (with its usual metric). Show that E is closed and bounded but not compact. (Problem 2, Page 109)
- (9) Show that the Hilbert cube H^{∞} is compact.(Problem 14, page 110)