(1) *

(a) Show that if (X, d) is complete then any decreasing sequence of closed sets

 $\cdots \subseteq F_n \subseteq \cdots F_2 \subseteq F_1$

where diam $F_n \to 0$ has a non-empty intersection, that is, $\bigcap_n F_n \neq \emptyset$.

(b) Let (X,d) have the property that any decreasing sequence of closed sets

$$\cdots \subseteq F_n \subseteq \cdots F_2 \subseteq F_1$$

where diam $F_n \to 0$ has a non-empty intersection, that is, $\bigcap_n F_n \neq \emptyset$. Then show that every infinite totally bounded subset of X has a limit point in X.

- (2) Let (X, d) be a metric space. Show that every Cauchy sequence with a convergent subsequence converges.
- (3) * Show that (X, d) is compact if and only if for any decreasing sequence of of closed sets

 $A_1 \supseteq A_2 \supseteq \cdots A_n \supseteq \cdots$ has a nonempty intersection, that is, $\bigcap_n A_n \neq \emptyset$.

- (4) * Let (X, d) be a metric space, show that $(\ell_{\infty}(X), || ||_{\infty})$ is a complete metric space.
- (5) * Show that every compact metric space (X, d) is separable. (Hint: $X = \bigcup_x B(x, \frac{1}{n})$ for all n.)
- (6) Give an example of a bounded continuous map which is not uniformly continuous. Can an unbounded continuous function on $f : \mathbb{R} \to \mathbb{R}$ be uniformly continuous.
- (7) Show that any function $f : \mathbb{R} \to \mathbb{R}$ is said to satisfy Lipschitz condition of order α , where $\alpha > 0$ is a real number, if there is a constant $K < \infty$ such that

$$|f(x) - f(y)| \le K|x - y|^{\alpha}$$

for all $x, y \in \mathbb{R}$. Prove that such a function is uniformly continuous.

(8) * Fix $y \in \ell_{\infty}$ and define $g : \ell_1 \to \ell_1$ by $g((x_n)) = (x_n y_n)$. Show that g is uniformly continuous.