MTH 751 Pre-Assignment

- (1) If $A \subseteq B$, show that $A \cup B = B$.
- (2) Let A be a finite set with n elements. Show that A has 2^n number of subsets.
- (3) Let S be a finite set and A(S) denote the set of bijections from $S \to S$. Show that if S has n elements A(S) has n! elements.
- (4) Let \circ denote composition of functions and $\sigma, \phi, \psi \in A(S)$. Denote the identity map by *i*. Show that
 - (a) $\sigma \circ \phi \in A(S)$
 - (b) $(\sigma \circ \phi) \circ \psi = \sigma \circ (\phi \circ \psi).$
 - (c) $\sigma \circ i = i \circ \sigma$.
 - (d) For every $\sigma \in A(S)$ there exists a $\phi \in A(S)$ such that $\sigma \circ \phi = \phi \circ \sigma$.
- (5) Prove that there do not exist integers a and b, such that $a^2 + b^2 \equiv 3 \mod 4$. (Hint: Write down the multiplication table for $\mathbb{Z}/4\mathbb{Z}$.
- (6) Compute the remainder when 37^{100} is divided by 29.
- (7) Show that prime factorization of a positive integer is unique.
- (8) Given prime factorizations of positive integers a and b write down the g.c.d of a and b in terms of those prime factorizations. Repeat the exercise for the least common multiple of a and b. (Hint: First relate g.c.d with l.c.m.)
- (9) Let (a, b) denote the g.c.d. of positive integers a and b. Show that there exist $m, n \in \mathbb{Z}$ such that (a, b) = ma + nb. (Hint: Take the least element of the set of all $\{ma + nb \mid m, n \in \mathbb{Z}, ma + nb > 0\}$.)
- (10) Let \mathbb{Z} denote the set of integers. Let p be a natural number. Define a relation \sim on \mathbb{Z} as follows; for any $a, b \in \mathbb{Z}$, $a \sim b$ if n/b a. Does \sim define an equivalence relation?
- (11) Given a set a A, let $R \subset A \times A$ define a equivalence relation. Show that equivalence classes under R give a partition of A.
- (12) Let $\mathbb{Z}/n\mathbb{Z}$ denote the set of equivalence classes of \mathbb{Z} under a partition defined by ~ (as defined in problem 10). Show that $\mathbb{Z}/n\mathbb{Z}$ is an abelian group under addition defined on the equivalence classes. Is multiplication well defined on $\mathbb{Z}/n\mathbb{Z}$? Is $\mathbb{Z}/n\mathbb{Z}$ a group for all $n \in \mathbb{Z}, n \geq 0$?